✨ ベストアンサー ✨
運動方程式から分かるように、力は加速度と関係します。
よって、力のつり合いが成立する場合、加速度は0となりますが、
それは、速度が0となって運動しないことと等価ではありません。
この状態では、何らかの要因で速度が与えられれば、
それが減衰することはなく、等速運動が生じます。
世界には揺らぎが存在しており、揺らぎによって気球が何らかの速度を持った場合、
F=fの状態であれば、その速度で運動が継続するため、
力のつり合い状態を、運動の開始するタイミングと考えます。
F=fになるまでに働いている力は無関係です。
F=fという条件が気球を地面に固定するためには、弱いと理解してください。
気球に働く合力をFa, 質量をm, 加速度をa、速度をvとすると(鉛直上向きが正)、
運動方程式よりFa=maとなります。
よって、Fa=0(f=F)が与える状態は、a=0となります。
しかし、実際の静止条件はv=0であるため、
f=Fは静止条件とは一致しません。
勿論、気球は最初に地上にあるため、初速度は0であり、
温度を徐々に上げていく過程では、正の加速度が作用しないので、
f=Fとなった段階では、計算上はv=0となります。
しかし、この状態は不安定であり、
熱揺らぎ等の揺らぎによって、容易に運動が開始するため、
運動の開始点とみなしても構いません。
そもそも、物理ではa<x, とa<=xの違いにあまり大きな意味はないと思います。
この違いを考えるには、lim(h->0) a+hの極限を考える必要がありますが、
数学とは違い、物理では各物理量を構成している因子が存在しているため、
無限に細かく分割することはできません
(そもそも小さな世界では物理法則が変化します(量子力学))。
つまり、古典物理(高校で習う力学など)の範囲では、
h->0の極限は厳密に取り扱うことができないため、
a<xとa<=xの違いは、ほとんど意味がありません。
何度もありがとうございます。
すっきりしました。
温かいお言葉ありがとうございます(^^)
頑張ります!
F=fになるまでに力が働き続けているので、F=fになってからは一定の速度で動き続けるということですか?