物理
大学生・専門学校生・社会人
解決済み

⃗r=(Rcosωt,Rsinωt,αt)の軌跡がz 軸のまわりの半径 R の螺旋である解説をお願いします。

回答

✨ ベストアンサー ✨

それぞれ成分ごとに分解して見てみましょう。

xy平面(Rcosωt,Rsinωt)
→半径R,中心(0,0,z),角速度ωの等速円運動。

z軸方向(αt)→速さαの等速運動。

ここで、実際にtを動かしてrの位置変化を見てみると、
t=0[s]のとき
r(0)=(R,0,0)
↓+π/6[s]
r(π/6)=(√3R/2,R/2,πα/6)
↓+π/6[s]
r(π/3)=(R/2,√3R/2,πα/3)
r(π/2)=(0,R,πα/2)
r(2π/3)=(-R/2,√3R/2,2πα/3)
r(5π/6)=(-√3R/2,R/2,5πα/6)
r(π)=(-R,0,πα)

マッハ

ありがとうございます!

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉