年級

科目

問題的種類

數學與統計 大學

統計學 第35題 請問裡面的e代表什麼意思? 第二小題的0.423怎麼來的?

試問 (3) E(X) 0 )XCa -10 fi -2.5 02-7-6--0,08 課。小考共有 象在測驗時必 -0,5 e .0.5 P{X:0) - * o - l = 0,60)# 其中只有一 要準差。 0次,並以 表抽出之 1.國國際機場旅客到達行李託運站服從卜瓦松分配,每分鐘到達 10久,試求: (1)1分鐘內沒有旅客到達之機率。(2) P(X=()。 15秒內至少有1位旅客到達之機率 。A_X] 公司的電話總機在忙碌時刻,平均每分鐘處理了通電話,又該總機每分鐘最多可接通: 0.18 5通電話,試以下瓦松分配求算在某分鐘內,該總機負擔過重的機率為何? 3. 佳佳化學工業公司每個月發生廢棄燃料意外起火事件之次數為0.1次,試求一年中發生 1件意外事件之機率為何? 4.設台北貓空纜車根據過去資料顯示,平均每半年發生無預警停駛3次,假定無預警停駛 ) 次數呈一下瓦松分配,試求: (1) 下一個月台北貓空纜車沒有發生無預警停駛的機率。 (2)下一個月台北貓空纜車至少發生1次無預警停駛的機率。 ' p(X21) - - p[X=0) 35. 設一工廠所製造玻璃每100平方呎有一個氣泡瑕疵,今購買該工廠生產的一片10呎寬、 1 -0,60%= 0.393* 30呎長的玻璃,試求: 0! = 0,05 # (1)沒有氣泡瑕疵的機率。 p(X=2)= e: (2) 恰有2個氣泡瑕疵的機率。 = P(X=2) - P(X1) 36. 設隨機變數 Z的分配為標準常態,試求: 01423-0199 (1) P(Z <0.5) (2) P(Z > -1.28)。 (3) P(-0.7 <Z< 3.1)。 (4) P(12] > 1.5)。 17 外遊變數 Z的分配為標準常態,試求下列值: 11. px-D) - -3 > e o 恰P=y1.4。 - 房間, 昌平均 - 0.2分 o ? 的限 能準

尚未解決 回答數: 1
數學與統計 大學

大一公衛系微積分,求第二題解

公衛系 微積分期末考 (28/12/2018) 1. Use the Laplace transform to solve the differential equations. (1) j(t)+2y(t) = x(t), y(0)=1, x(t)=10, t20 (20) (2) Intravenous glucose is a treatment. Disposed at a fixed rate k grams per minute inputs into the blood, while blood glucose will be converted to other substances or moved to another place, at a rate proportional to the amount of glucose in the blood, the proportionality constant is a (a> 0), the initial amount of glucose in the blood is M. A. Find the variation in the amount of glucose in the blood (15) B. Determining the equilibrium, the amount of glucose in the blood. (5) = 2. SI Epidemic Model : The size of the population, n+1, remains fixed. Let i(t) be the number of infectives at time t, and let s(t) be the number of individuals who are susceptible. Given an initial number of infectives iO), we would like to know what will happen to i(t). SI Epidemic Model is described by the differential equation. di(t) = k·i(t).s(t) ......(5.1) dt i(t)+s(t)=n+1 i(0)=i, (1) Solve this differential equation of the SI Epidemic Model (5.1). (10 h) (2) What is the peak times t of the epidemic spread? (10) 3. Consider the Two-compartment physiological models and is shown in figure 1. C1 (t) represent the drug concentration in the first compartment and C2 (t) represents the drug concentration in the second compartment. Vi and V2 represent the compartment volume. Use the first order linear differential equation general solution to solve the C1 (t) (20 ) and use the Laplace transform to solve C2 (t). 【20 分). | 世」!()

待回答 回答數: 0