年級

科目

問題的種類

數學與統計 大學

求大神求解 助小的一臂之力

「8 16 27 16 24 15 20 JI 23 | 19 21 17 26 28 23 1 13 23 尺 31 (1) 依據上面的,是否能示出接線程「之工,其平均完成工作,少能。 課程2之工人?(以i=0.05 QE) (b)说明對母他所作的任何假股, (C)求此二理之完成工作時間的母個平均數之95%信通感面。 5. 报宣稱某项工業安全計畫對於低工職稱外(故而减少工作時間損失)的级奥奇佳。 列的資料乃是觀察6家工廠,就其實施該項安全計畫前袋,每損失工作時動。 1 2 3 4 5 6 15 2.83 12 29 16 37 28 10 28 17 35 25 16 根據上面的資料,是否支持此項宣稱?(使用r=0.05 檢定) 6. 有二種訓練記憶的方法,今欲檢定哪種方法較佳。選取對學生進行此項研究,每一對 學生依其IQ的高低與年級來配對,然後機指派至兩種方法。 訓練結束後,進行曲, 所須的成績列於下: 1 2 3 4 5 6 7 8 9 86 72 65 44 52 46 38 43 方法 4 90 方法B 85 87 70 62 44 53 42 35 45 設(r=0.05,定此二方法的效果是否有顯著的差異。 7某一貨運公司欲從二條運輸路線(甲地至乙地)擇其旅程時間較短者。進行此項研究時, 從10位司機中,隨機選出5位走路線 A,其餘的5位走路線B。求得如下的資: 路線A 路線B 旅程時間(小時) 18 24 30 21 32 22 29 34 25 35 (a)此二條路線之平均旅程時間是否有顯著的差異?進行此檢定時,需作何種假想? (b)就此項研究,提出另一種設計,使得比較的結果更正確。 8.進行以藥物消除手術後的痛苦之要脸,欲判斷藥物之消除痛苦的時間是否較藥物B為 長。觀察 5位病人服用藥物 4,58位病人服用藥物 B, 記錄其消除痛苦時間,並求出平 均數與準差,如下所示:

待回答 回答數: 0
數學與統計 大學

第二題的d的積分範圍要怎麼設

6 Kx, lo, 14) 1. (10 points) How many even numbers can be formed from the digits 9, 1,4,5,6, and 9 if each digit can be used only once? 2. (50 points) Let X and Y denote the lengths of life, in years, of two components A and B, respectively, ş! x2 in an electronic system. If the joint density function of these variables is 64 0<x<1-ycl EX,Y) Rx hy 0 < x <1.0<x<1-x: f(x, y) = elsewe jey.301-4)*84f CX74 3 Rxdy * 了 1' Jay You Determine the value k; FED ECX) = 86 x 6xci->)dy cy) 3(1-2) ² (b) Find the marginal distributions, expected values, variances, and covariance of X and Y; dy= 1 (C) Determine whether X and Y are dependent or independent; X(d) Find the probability that the length of life of component A is less than that of component B; X(e) Find the probability that the length of life of component A is greater than one year, given the ar length of life of component B is equal to two year. xcy 1313. (10 points) The probability that a flight departs on time is 0.3; the probability that it arrives on time is 0.3; and the probability that it departs and arrives on time is 0.1. Find the probability that it arrives on time, given that it did not depart on time. ex oin 4. (20 points) The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable with cumulative distribution -8x76 / le = 1- e 11-e dx x ZO; dv=e 0, f(x) = f'(X) = x < 0. 8 e V= 1 84 (a) Find the probability of waiting less than 10 minutes between successive speeders; hind the wyerane waiting time between successiye speeders spotted by a radar unit. 013-0il u=X -8X -81 -8% ge

待回答 回答數: 0