学年

質問の種類

情報:IT 高校生

表を見てもらうと電子メールの同期性が❌になっていると思うのですが、これは送信者が送った丁度その時に受信者がみることはないからという事ですか?

02 メディアとその特性 A ポイント整理 1 » メディアとは何か 教科書 4-5ページ <DIKWピラミッド> 知恵 Wisdom Chris Knowledge 情報 Informa データ Data )とは、情報を伝達する際に仲介役となるもの。 情報機器を用いたも ●メディア のに限らず、紙などさまざまなものも考えられる。 ・表現 のためのメディア・・・情報を表現する手段。 ●伝達 のためのメディア・・・ 情報の伝達や通信の仲立ちとして使われる。 ・記録 のためのメディア・・・ 情報の記録や蓄積のために使われる。 伝達のためのメディアの特徴を整理すると、次のようになる。 情報の送信と閲覧の 方向 代表的な形態 同期性 主な表現形式 タイミングが同時かどうか 1対1 X 文字 手紙 双方向 ⑥ ⑤ 新聞 一方向 1対多 X 文字画像 ① Webページ 一方向 1対多 △ 文字,音声,画像,動画 9 電子メール 双方向 1 対 1 X 電子掲示板 双方向 多対多 Bx2ch. 10 SNS 双方向 多対多 テレビ会議 双方向 多対多 テレビ 一方向 1対多 × ○ ○ 文字 文字 文字, 音声, 画像, 動画 文字 音声, 画像, 動画 文字 音声 画像 動画 2 メディアと情報 ● ■情報は伝達される過程で、送り手側でメディアに変換され, メディアで送られ、受け手 側でメディアから情報に変換される。 そのため、必ずしも送り手側と受け手側で情報が ●一致)するとは限らない。 情報を扱うとき, メディアの特性を考えて,どのメディアで表現し,どのメディアで (伝達し、どのメディアで記録することが適しているかを判断する必要が ある。また,メディアからの情報は発信者の価値観などによって編集)されて いるため、情報の信憑性や価値を正確に評価する能力が必要である。 ●メディアリテラシー)は、メディアを介して得られた情報を読み解く能力である。 メディアを活用する力や, メディアで情報を発信する力を含めることもある。

解決済み 回答数: 1
数学 高校生

数列です。この問題のカッコ2って階差数列で解いてもいいのでしょうか。もし解いていい場合、階差数列であるということが問題文に書いていないのに使っても問題ないのでしょうか、回答お願いします

j≦n, k≦nとして,次の ● 7 数表 正方形の縦横をそれぞれn等分して,n2個の小正方形を作り,小正方 形のそれぞれに1からn2 までの数を右図のように順に記入してゆく. 1 4 6 16 2 3 8 8 15 |にあてはまる数または式を答えよ. 5 6 7 14 (1) 1番上の行の左からん番目にある数はア. 10 11 12 13 (2) 上からj番目の行の左端にある数はイ. : : (3) 上から番目の行の, 左からん番目にある数は, 1≦k≦ウ のとき エ ウ <k≦nのときオ. (4) 上からj番目の行のn個の数の和から最上行のn個の数の和を引くと, となる. ( 京都薬大) キリのいい形で 数を一定の規則によって並べたものを扱う問題は, キリのいい形に着目し, 解決 の糸口をつかもう. 上の例で言えば, 正方形に着目する. 解答 番目の行の左側からん番目にある数を (j, k) とする.例えば, (2,3)=8 (1) (1,k)は図1の正方形に入っている最後の数で, ア= (1, k)=k2 (2)1つ手前は (1, j-1) だから,イ= (j, 1) =(1, j-1)+1=(j-1)2+1 (3) 図2,図3より, ウ=j 図 1 図2より, 1≦k≦jのとき, (j,k)=(j,1)+k-1=(j-1)2+k(=エ) 図3より, j<k≦nのとき, (j,k)=(1, k)-(j-1)=k-j+1(=オ) (4) [引いてから和をとる方が少しラク] (1),(3)より, (j,k) - (1,k)は, (i) 1≦k≦jのとき,エーア=(j-1)+k-k2 (i) j+1≦k≦nのとき, オーア=-j+1 よって、 求める 「和の差」 は, n-jコ n \ { ( i −1 )² + k − k ² } + " (−j+1) [~m= ( − j +.1) + ··· + ( − j+1)] 1.......ろ 図 2 1 kj-lj ウ j-1 2 (-1)² 図 3 1........ S 個

解決済み 回答数: 1
数学 高校生

(2)です。僕の解き方でどこが間違っているか教えてください

c 2直線の交点を通る直線の方程式 2直線 x+2y-4=0, 2x-y-30 に対して, 方程式 k(x+2y-4)+ (2x-y-3)=0 ① の表す図形とは? ただし, kは定数とする。 k=1 k=0 k=2 ① は, 連立方程式 x+2y-4=0, 2x-y-3=0 2x-y-3=0 2 の解x=2, y=1に対して常に成り立つ。 k=-1 1. x=2, y=1は2直線上の点なので x+2y-4に代入しても0 2 4 x 2x-y-3に代入しても 0 -3 x+2y-4=0 よって, kがどのような値をとっても ①は, 2直線の交点(2, 1) を通る図形を表す。 x=2, y=1 を代入したら式が成り立つので ① を x, y について整理すると (k+2)x+(2k-1)y-4k-3=0 ここで,x,yの係数k+2, 2k-1は同時には0にならない。これは直線の式なので 方程式 ① は, 2直線の交点を通る直線を表す。 (図のように,kの値によって (21) を通る直線がいろいろ決まる) ただし, 直線 x+2y-4=0は表さない。 (式) = 0 の形で表された2直線について k(式1こ目) + (式2こ目) = 0 は,交点を通る直線である。 例8 2直線x+2y-4=0, 2x-y-3=0の交点と点(-1, 5) を通る直線の方程式は? を定数としてk(x+2y-4)+(2x-y-3)=0 とすると,①は2直線の交点を通る直線を表す。 この直線が点(-1, 5) を通るとすると, ① に x=-1, y=5を 代入して ゆえに 5k-10=0 k=2 これを①に代入して整理すると 4x+3y-11=0 ①のなかから,(-1,5) を通る 「当たり」 の直線を見つけている。 [終]

解決済み 回答数: 1
生物 高校生

最後のウをどうやって求めたらこうなってるの解説を読んでもわかりません。詳しく教えてください。

解答 問1. ア・・・ ①イ・・・ ③ウ・・・⑥ 問2 ⑤ 共通テスト対策 解法のポイント 問1. アとイについて, ATP は以下の図のような構造をしている。 塩基の1種である アデニンと糖の1種であるリボースをまとめてアデノシンといい、ここにリン酸が3 結合している。 アデノシン三リン酸と 高エネルギーリン酸結合 ATP の正式名称は,この構造にもアデノシン とづいたものである。 高エネルギーリン 酸結合は,リン酸とリン酸の間の結合で あるため、 その数は2つとなる。 食 アデニン P P P ※モンをリボース リン酸 ウについて,いくつものデータが示さ れているが,必要なデータのみを選択し S 計算に用いる。 この動物1個体が1日に消費するATP量は, 「1つの細胞が1時間あ たりに消費する ATP量 × 24 (時間)×全細胞数」 で求めることができる。 すなわち、 3.5×10-" (g) ×24 (時間)×6×1012(個)=5040 よって、 この動物は1日あたり約5kgのATPを消費することがわかる。ホルモンを なお, 性質 I, Ⅲから,この動物1個体がもつ ATP の総重量を求めると, 8.4×10-13 (g)×6×1022 (個)=5.04g となる。 この動物がもつ ATP の総重量はたった 5gであるにもかかわらず、1日あたり5kgのATPを消費していることがわかる。 ATP が常に合成と分解をくり返しているために,このようなことが可能になる。

解決済み 回答数: 1
生物 高校生

なんで赤線のところの配偶子の比が分かるのですか? 教えてください!!

例題 解説動画 発展例題1 三遺伝子の組換え の系統と進化 第1節 生物の系統 第2節 発展問題 21 BBGGYroba 20:0:0: 問3.ウ 問4 bgRR:b0 問1、両機の交 とあるので ある植物では,野生型に対して,小さい葉をもつ系統,光沢がある葉をもつ系統, 赤色の茎をもつ系統がある。これらの形質は,それぞれ1対のアレルにより決定され、 小さい葉(b), 光沢がある葉 (g), 赤色の茎 (r) のいずれの形質も野生型 (それぞれB, G, R) に対して潜性である。()内は,それぞれの遺伝子記号である。 いまこれらの3組のアレルの関係を調べるために, 赤色の茎をもつ純系の個体と、 bbag 小さくて光沢がある葉をもつ純系の個体を親として交配し, F, を得た。さらに,この F を検定交雑した結果が次の表1である。 なお、表現型の+はそれぞれの形質が野生 型であることを示す。 Rans 問1問10 する。(連絡 問1. 交配に用いた両親の遺伝子型を 答えよ。 B 表1 G 表現型 問2. 文章中の下線部について,次の (1),(2)に答えよ。 個体数 bgr ① 小さい葉 光沢がある葉 赤色の茎 ②小さい葉 (1) Fi および F の検定交雑に用い また個体の遺伝子型を答えよ。 光沢がある 237 beg 232 問3.下表は ③ 小さい葉 + 赤色の茎 17 と同 (2) 3組のアレルがすべて異なる相 同染色体上に存在するものと仮定 した場合, F を検定交雑すると, 理論上どのような次代が得られる か。 次代の表現型とその分離比を (4 ⑤ 小さい葉 + 光沢がある葉 赤色の茎 21 形のうち注 整理したもの + + 19 とは別の染色 + A 光沢がある葉 + 23 A表 ⑦ ⑧ + 赤色の茎 227 + + 224 ②L *BEG 合計1000 例にならって答えよ。 なお, 表現型は表1の番号を用い, 分離比は最も簡単な整 数比で答えよ。 (例・・・ ①②: ④:⑧=1:1:2:2) BEG の組み を考える 問3. 表1の結果から考えて, Fi の染色体と遺伝子の関係を示し た図はどれか。 図1のア~カか ら1つ選べ。の組み合 合 問4. 連鎖している2遺伝子の間 この組換えは何%か。 小数第1 位を四捨五入し, 整数で答えよ。 なお,問56で必要であれば, Bb B1-b ベル B -b Gg) Gg/ Fr Gg RiFr ウ Bb Bb G- g R r g B -b g G I r ・R R- r オ カ 図 1 連鎖している遺伝子の組換え価はここで求めた数値を用いよ。 5.表1の②の個体の自家受精を行った。次代の遺伝子型とその分離比を,最も簡 単な整数で答えよ。菜糖を行っ 問6.表1の⑦の個体が自家受精を行った。次代に生じた全個体のなかで,3組の形 質がいずれも潜性である個体の割合は理論上何%になるか。小数第2位を四捨五入 し,小数第1位まで答えよ。 (大同大改題) 4.間3 受され 胃6.0 Bigr h る回け 海が

解決済み 回答数: 1
1/1000