学年

質問の種類

数学 高校生

数列の極限の問題です。 (3)について、P2(n-1)をP1(n-1)に直さずに計算することは可能でしょうか? できたらその計算方法を教えていただきたいです。宜しくお願い致します。

18 2014 年度 数学 3. 四角形ABCD の異なる2つの頂点に玉が1個ずつ置かれている。以下の手順で玉を動か す操作を1回の操作とし、 それを繰り返す。 ただし、 四角形の頂点は反時計回りにABCD の順番で並んでいるとする。 1. 置かれている2個の玉から無作為に1個の玉を選択する。 2. 選択した玉の置かれた頂点に隣接する2つの頂点のうち,反時計回りの方向にある頂 点が他方の玉に占有されていない場合には確率pでその頂点に玉を進め、その頂点が 既に他方の玉に占有されている場合には玉は動かさない。 この操作により得られる玉の配置について、以下の問いに答えよ。 16.0 (1) 次の確率を求めよ。 (a)頂点AとCに玉が置かれているとき、1回の操作の後に2個の玉が隣り合う確率 -61 (a) THE A (b)頂点AとCに玉が置かれているとき, 1回の操作の後に玉の配置が変わらない Uits 確率 (c) 頂点AとBに玉が置かれているとき, 1回の操作の後に2個の玉が隣り合わない 確率 (d)頂点AとBに玉が置かれているとき, 1回の操作の後に玉の配置が変わらない 確率 8 441 (2) 最初に頂点AとCに玉が置かれているとき, 7回 (n ≧1) の操作の後に2個の玉が Jak Take to 隣り合わない確率を Pi (n), 隣り合う確率をP2(n) とする。 Pi (n) および P2(n) を Pi(n-1) と P2 (n-1) で表せ。 (3) 極限値 lim Pi(n) および lim P2(n) を求めよ。 n→∞ n→∞

回答募集中 回答数: 0
1/5