学年

質問の種類

物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
現代文 高校生

2枚目P22ページの例えば、から何言ってるのかわかりません。 現代文得意な方詳しく説明願います

がした 可能 いわ * いや生全体に 二〇一七年度 第 次の文章を読んで、後の設問に答えよ。 与えられた困難を人間の力で解決しようとして営まれるテクノロジーには、問題を自ら作り出し、それをまた新たな技術の開発 によって解決しようとするというかたちで自己展開していく傾向が、本質的に宿っているように私には思われる。 科学技術によっ て産み落とされた環境破壊が、 それを取り戻すために、新たな技術を要請するといった事例は、およそ枚挙にいとまないし、感染 防止のためのワクチンに対してウィルスがタイセイを備えるようになり、新たな開発を強いられるといったことは、毎冬のよう に耳にする話である。東日本大震災の直後稼働を停止した浜岡原発に対して、中部電力が海抜二二メートルの防波堤を築くことに よって、「安全審査」を受けようとしているというニュースに接したときも、同じ思いがリフレインするとともに、こうした展開に はたして終わりがあるのだろうかという気がした。 技術開発の展開が無限に続くとは、たしかにいい切れない。 次のステージにな にが起こるのか、当の専門家自身が予測不可能なのだから、先のことは誰にも見えないというべきだろう。けれども科学技術の展 開には、人間の営みでありながら、有無をいわせず人間をどこまでも牽引していく不気味なところがある。いったいそれはなんで あり、世界と人間とのどういった関係に由来するのだろうか。 けんいん 医療技術の発展は、たとえば不妊という状態を、技術的克服の課題とみなし、人工受精という技術を開発してきた。その一つ体 外授精の場合、受精卵着床の確率を上げるために、排卵誘発剤を用い複数の卵子を採取し受精させたうえで子宮内に戻す、といっ たことが行なわれてきたが、これによって多胎妊娠の可能性も高くなった。 多胎妊娠は、母胎へのフィジカルな影響や出産後の経 済的なことなど、さまざまな負担を患者に強いるため、現在は子宮内に戻す受精卵の数を制限するようになっている。だが、この 制限によっても多胎の「リスク」は、自然妊娠の二倍と、なお完全にコントロールできたわけではないし、複数の受精卵からの選択、 また選択されなかった「もの」の「処理」などの問題は、依然として残る。 いろう いずれにせよ、こうした問題に関わる是非の判断は、技術そのものによって解決できる次元には属していない。体外授精に比し より身近に起こっている延命措置の問題。 たとえば胃瘻などは、マスコミもとりあげ関心を惹くようになったが、もはや自ら食 事をとれなくなった老人に対して、胃に穴をあけるまでしなくても、鼻からチューブを通して直接栄養を胃に流し込むことは、か なり普通に行なわれている。このような措置が、ほんのその一部でしかない延命に関する技術の進展は、以前なら死んでいたはず の人間の生命をキュウサイし、多数の療養型医療施設を生み出すに到っている。 しかしながら老齢の人間の生命をできるだけ長く引き伸ばすということは、可能性としては現代の医療技術から出てくるが、現 実化すべきかどうかとなると、その判断は別なカテゴリーに属す。「できる」ということが、そのまま「すべき」にならないのは、 核爆弾の技術をもつことが、その使用を是認することにならないのと一般である。 テクネー (TEX(VM) である技術は、ドイツ語 Kunst の語源が示す通り、「できること(können)」の世界に属すものであって、「すべきこと (sollen)」とは区別されねばならない。 テクノロジーは、本質的に「一定の条件が与えられたときに、それに応じた結果が生ずる」という知識の集合体である。すなわ ち、「どうすればできるのか」についての知識、ハウ・トゥーの知識だといってよい。それは、結果として出てくるものが望ましい かどうかに関する知識、それを統御する目的に関する知識ではないし、またそれとは無縁でなければならない。その限りのところ それが単なる道具としてニュートラルなものに留まりえない理由もある。 では、テクノロジーは、ニュートラルな道具だと、いえなくもない。ところが、こうして「すべきこと」から離れているところに、 ほうてき テクノロジーは、実行の可能性を示すところまで人間を導くだけで、そこに行為者としての人間を放擲するのであり、放擲され た人間は、かつてはなしえなかったがゆえに、問われることもなかった問題に、しかも決断せざるをえない行為者として直面する。 妊婦の血液検査によって胎児の染色体異常を発見する技術には、そのまま妊娠を続けるべきか、中絶すべきかという判断の是非 を決めることはできないが、その技術と出会い行使した妊婦は、いずれかを選び取らざるをえない。いわゆる「新型出生前診断」 3限目 問題文

回答募集中 回答数: 0
1/155