学年

質問の種類

物理 高校生

(3)の円形電流が中心Oに作る磁場は、紙面に垂直に裏から表の向きとなればよいから、反時計回り。 この答えの意味がわかりません!(1)と同じで表から裏の向きって答えてしまいました。解説お願いします🙏

例題 解説動画 第1章 磁気 基本例題69 直線電流と円形電流がつくる磁場 図のように,長い直線状の導線 XY に 15.7A の電流が流れて おり、そこから20cm はなれた位置に中心Oをもつ,半径10cm の5回巻きの円形導線がある。 両者は同一平面内にあるとする。 (1)直線電流が円の中心0につくる磁場の強さと向きを求めよ。 (2)円の中心0の磁束密度の大きさを求めよ。 ただし, 空気の 透磁率をμ=1.3×10 - N/A2 とする。 基本問題 510,511 X (3)円形導線に電流を流して, 中心0の磁場を0とするには,円 Y 形導線に,どちら向きにどれだけの電流を流せばよいか。 指針 (1) (2) 直線電流がつくる磁場は, 「H=I/(2πr)」 から求められ,磁束密度は, 「B=μH」 から計算される。 (3) 直線電流によってできる磁場と,円形電流 によってできる磁場が打ち消しあうように, 円 形導線に電流を流せばよい。 - (1) 求める磁場の強さは, 解説 I 15.7 H= 2πr 2×3.14×0.20 =12.5A/m 15.7 A 13A/m H 磁場の向きは,右ねじの 法則から、紙面に垂直に 袋から裏の向き (図)。 0 0.20m & ↑ 15.7 A NW (2) 磁束密度の大きさBは, 10cm 0 20cm→ B=μH=(1.3×10-) ×12.5 =1.62×10-5T -1.6×10-5THA-a] (3)巻数N, 半径rの円形電流が,その中心につ くる磁場の強さHは, H=N 2r 円形電流がつくる磁場の強さと, (1) で求めた 磁場の強さが等しくなればよい。 I I=0.50AAR 12.5=5X 2×0.10 円形電流が中心0につくる磁場は,紙面に垂直 に裏から表の向きとなればよい。反時計まわり a\m]s

解決済み 回答数: 1
数学 高校生

(1)がわかりません 解説お願いします🙇‍♀️

基本 例題 432通りの部分和S2n-1, S2n の利用 1 1 1 無限級数 1- + 1 1 + + 2 4 2 3 3 4 75 00000 ・・・について ① (1) (1)級数①の初項から第n項までの部分和をSとするとき, S2n-1, S2 をそれ ぞれ求めよ。 (2) 級数① の収束, 発散を調べ, 収束すればその和を求めよ。 指針 (1) San-1が求めやすい。 San は Sun = Sui+(第2n項)として求める。 基本42 (2) 前ページの基本例題42と異なり,ここでは()がついていないことに注意。 このようなタイプのものでは,S" を1通りに表すことが困難で, (1) のように, San-1, S2n の場合に分けて調べる。 そして、次のことを利用する。 [1] limS27-1= limS2 = Sならば limS=S n→∞ n→∞ [2] lim S2n-1≠lim S2 ならば 110 n10 n→∞ {S} は発散 はり立つ。 "(+b) (1) S2n-1-1-- + 解答 Buta = 1 1 1 1 + 2 2 3 3 + 1-(12/28-1/2)-(13-1/3)-(一号) =1 n n+1 n n Job 部分和 (有限個の和) なら ( )でくくってよい。 参考 無限級数が収束す れば,その級数を、順序を 変えずに任意に() でく くった無限級数は,もと の級数と同じ和に収束す 1 1 S2n=S2n-1- =1- -2 n+1 n+1 (2)(1) から よって n→∞ したがって、 無限級数は収束して, その和は1 ることが知られている。 n→∞ 81U limS2n-1=1, limS2n=lim1- n→∞ limS=1 *** +*(1+2)--

解決済み 回答数: 1
数学 高校生

短い方と言われているので2つの正方形の面積は一致しないことはわかります。ですが、右の指針(?)が書いたある欄に80センチの半分「以下」と書いてあるにも関わらず、0<4x <40となっており違和感を感じます。指針の通りに解答を書くならば0<4x≦40ではないでしょうか。(私の... 続きを読む

例題 80 2次不等式の応用 **** 曲げて正方形を2つ作る。 2つの正方形の面積の和が218cm以上となる 長さ80cmの針金がある. これを2つに切って, それぞれの針金を折り ようにするには、針金をどのように切ればよいか。 短い方の針金の長さの 範囲を求めよ. 考え方 まず何を文字でおくか考える. (2) 例題 実数x,yc (1) z=x2 (2)x0. 考え方は(x 3x+y しかし 変数関 徳島文理大) ここでは,短い方の針金の長さの範囲を求め ったので, で, 短い方の針金の長さを文字でおく。 このとき, 右の図のように針金は正方形に折 り曲げて考えるので,文字はxではなく, 4xcm とおく。 針金の長さをxcm とおくと... C cm 4 針金の長さを4xcm とおくと... 解答(1) 04x <40 より, 0<x< 10 解答 短い方の針金の長さを4xcm とすると, 長い方の針金の 長さは, 80-4x=4(20-x) (cm) xcm 2つの正方形の1辺の長さは, それぞれ, x cm, ① XC 020-x (20-x) cm だから, より. I- x2+(20-x)^≧218 2x2-40x+400≧218 2x2-40x+182≧0 x2-20x +91 ≧ 0 0s (1-0)(T- 2 -1) 短い方の針金は 80cmの半分以下で ある. 2つの正方形の和が 218cm² 以上を不等 (x-7)(x-13)≧0(DS)(D) 式で表す. x≦7,13≦x ...... ② ①,②より, 0(S-)(Sto ② 02 (S-1) (STD (k)-0の特別式D AD ② 0<x≦7 ① よって, 0<4x≦28 だから, 短い方の針金の長さ の範囲は, 0cm より長く, 28cm以下とすればよい. 0 17 10 13 x

未解決 回答数: 0
1/1000