学年

質問の種類

数学 大学生・専門学校生・社会人

確率の勉強をしている学生なのですが、この問題が分かりません。どなたか教えていただけませんか。

練習問題 1.8 (積率母関数) X を非負の確率変数とし, x(t) = Eetx は全てのt∈ に対して有限であると仮定する.さらに,全てのt∈ R に対し E [XetX] < ∞ であると仮定する.この練習問題の目的は, '(t) = E [Xetx] で あり、特に'(0)=EX であることを示すことである。 微分の定義, すなわち次式を思い出そう. 4'(t) = lim x(t) - (s) lim st t-s st EetxEesx t-s 「etx = lim E st t-s 上式の極限は,連続な変数sについて取っているが,t に収束する実数列{8}n=1を 選ぶことができ, 次を計算すればよい. 「etx e³n X lim E sn→t t-Sn これは、次の確率変数の列 etx -enx Yn = t-Sn の期待値の極限を取っていることになる.もしこの極限が, t に収束する列{Sn}=1 の選び方によらず同じ値になるならば、この極限も limotE [ex と同じで,そ れは '(t) である. .tx sx ← -e t-s 解析学の平均値の定理の主張は,もしf(t) が微分可能な関数ならば、任意の実数 s ともに対し,stの間の値の実数0で次を満たすものが存在するというものである. f(t)-f(s) =f' (0) (t-s). もしweΩを固定し,f(t) = etx(w) を定義すると,この式は, etX(w)_esx(w)=(t-s) X (w)e (w)x(w) (1.9.1) となる.ただし,(ω) はωに依存する実数 (すなわち,tとsの間の値を取る確率変 数)である. (i) 優収束定理 (14.9) (191) 式を使って,次を示せ. lim EY = Elim Yn=E [XetX] . (1.9.2) n→∞ [n→∞ このことから,求める式 4'(t) [XetX ] が導かれる. (ii) 確率変数 X は正の値も負の値も取り得、全てのt∈Rに対し Eetx < かつ E [|X|etX] < ∞ であると仮定する。 再度 '(t) = E [XetX] を示せ(ヒント: (1.3.1) 式の記号を使って X = X + - X- とせよ . )

未解決 回答数: 1
数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

(2)の ∵(1) の行から分かりません... どなたか教えてください

導関数 93 (1) f(x), g(x) をxの整式とするとき, 次の等式を証明せよ。 {ƒ(x)g(x)}'=f'(x)g(x)+ƒ(x)g'(x) (2) f(x) を0でないæの整式とする. 自然数nについて d ¹/__ { f(x)}" =n{f(x)}"~¹ƒ'(x) dx であることを証明せよ. 精講 の特殊な例です. どちらも数学Ⅲで 扱うものですが、知っておいて損はないでしょう. (1) 導関数 f'(x) の定義から出発しましょう. 関数 y=f(x) が与えられたとき、xのおのお のの値αに対し,f'(a) が存在するとき, 対応 a→f'(a)は1つの新しい関数となります。 これはf(x) から導かれた新しい関数ですから, f(x) の導関数 (derived function, derivative) といい, f'(x) と表します。 (x)^x=(1) f'(x)=lim f(x+h) -f(x) h h→0 f(x) から f'(x) を求めることを微分するとい います. 導関数の表し方は f'(x) のほかに dy d y', y, dr' anf(x), Df(z) (1) は積の微分, (2) は合成関数の微分 解法のプロセス dy などもあります。」はニュートン, dx (1) {f(x)g(x)}' =lim h→0 BROSSARD a 213 ニッツが用いた記号です. (2) 自然数nについての証明問題ですから,数 学的帰納法を使うとよいでしょう. f(x+h)g(x+h)-f(x)g(x) =lim h→0 はライプ 解答 (1)積の微分 iu-te {f(x)g(x)} 導関数 f'(x) の定義 ↓ f(x+h)-f(x) h lim- h-0 ↓ (滋賀大) =f'(x)g(x)+f(x)g'(x) (2) 合成関数の微分 {(f(x))"}' =n{f(x)}"-¹f'(x) AJSHOW 特に {(ax+b)"}' =na(ax+b)-1 この公式は使えるようにして おこう {f(x+h)-f(x)}g(x+h)+f(x){g(x+h)-g(x)} 導関数の定義 ◆f'(x), g'(x) が現れ るように工夫する 第6

解決済み 回答数: 1
1/2