学年

質問の種類

物理 高校生

(3)は何で、20mになるんですか? y=19.6まではできたんですけど、何で20になるか分かりません。 有効数字3桁じゃないんですか?

落下 -s), g 15 20 10 30 25 5 20 15 10 5 きさを g〔m/s²] 位をy[m]とする とおくと, 鉛直投げ上げ運動は次式で表される。 v = Vo - gt 1 291² y = vot- 鉛直投げ上げ運動 v (m/s) ●v[m/s] 速度 (velocity), [ 〔m/s) 初速度 (velocity), ●y [m] 変位, ●g 〔m/s²]: 重力加速度の大きさ (gravitational acceleration) v²-vo²=-2gy 19 17 [s]: 時間 (time), 18 Vo O y, Do Vo, a = - g 最高点まで の変位 (傾き- g 最高点から の変位 v = vo-gt 例題 8 鉛直投げ上げ運動 小球を地面から初速度 19.6m/sで真上に投げ上げた。 次の問い に答えよ。 ただし、重力加速度の大きさを9.8m/s2 とする。 (1) 1.0s 後の小球の速度はいくらか。 (2) 1.0s 間の小球の変位はいくらか。 (3) 最高点の地面からの高さはいくらか。 (4) 3.0s 後の小球の速度はいくらか。 解 鉛直上向きを正の向きとする。 (1) 式図7にvo = 19.6m/s, g = 9.8m/s, t = 1.0s を代入して, v=19.6m/s - 9.8m/s2 × 1.0s = 9.8m/s (2) 式区にv=19.6m/s, g=9.8m/s2, t = 1.0s を代入して, y = 19.6m/s × 1.0s - x 9.8 m/s² x (1.0s)² = 14.7 m 1 2 t(s) (3) 式19にv=0m/s, v = 19.6m/s, g = 9.8m/s² を代入して (0m/s) (19.6m/s)2=-2x 9.8m/s2 x y y=19.6m (4) 式図7にv=19.6m/s, g=9.8m/s2, t = 3.0s を代入して, v=19.6m/s - 9.8m/s2 x 3.0s = -9.8m/s ・vo POINT ・鉛直投げ上げ運動の特徴: 最高点での速度はv=0m/s. ▲図2 鉛直投げ上げ運動 Note 等加速度直線運動の関係式 v = vo + at 8 9 x = vot+ 1/12/0 v² vo² = 2 ax 19.6m/s Note 最高点では, 速度は 0m/sとなる。 at² 10 容 (1) 上向きに 9.8m/s (2) 上向きに15m (3)20m (4) 下向きに 9.8m/s 1節運動の表し方 23

解決済み 回答数: 2
物理 高校生

なぜ、この公式ができるのか教えてほしいです。 よくわからないので教えてください

2 等加速度直線運動 斜面を転がり落ちる小球は, 加 速度が一定の直線運動をしている Im/s) 図16 斜面を転がり落ちる小球 二定の時間間隔で撮影した連続写真である。 (図1)。このような, 加速度がー 定である直線運動を,等加速度直 線運動という。 ●等加速度直線運動の式 加速度 a [m/s°]で,物体が等加速度直線 運動をしている。このとき, 時刻 t=0における速度(初速度)をvo [m/s), そのときの位置を原点と し,初速度の向きを正としてx軸 をとる(図17)。時刻 t[s] における 速度をv[m/s]とすると,式(11) から,速度ひは,次式で表される。 の linear motion of uniform acceleration 変位x Vo 0 At 図1回 v-tグラ 時刻0 時刻t initial velocity 図17 等加速度直線運動 運動を測定し始める時刻をt30 とする。 また,式 らtを消去 V2-V1 式(11) Op.18 得られる。 a= t-t vーv 途中計算 式(11)に, a=a, t=0, な=t, v,=0, 5 ひ2=ひを代入して整理すると,式(12)が得られる。 V= Vo+at …(12) この運動のひーtグラフは, a>0であれば,図18のような右上がりの直線 となる。このとき,グラフの傾きは加速度 a, 切片は初速度 voに相当する。 このグラフを利用することによって, 時刻 t[s] における物体の変位 x [m]は、 次式で表される。 等加 1 *=vot 2 傾きは加速度 aを表す [m/s) +; at…(13) 式(13)の導き方図18で, 時間を微小な時間 間隔 At(s]で等分すると,各区間は等速直線 運動とみなせる(図19(a))。このとき, 各区間 の移動距離は,長方形の面積で表され, 時刻 t(s] における変位x[m] は, それらの面積の 総和となる。4t(s]が十分に小さければ, 長 方形の面積の総和は斜線部の台形の面積に等 しく,変位x(m] は式(13)で表される(図19(b))。 at 10 Vo 切片は初速度 V。を表す 問 Vo 東店 0 t 時間t 15 20 第1章 力と衝動 図18 等加速度直線運動の vーtグラフ 速度 "

解決済み 回答数: 1
1/3