学年

質問の種類

数学 高校生

(2)の数直線のとこで3a−2/4はなんで⚪︎なんですか⚫︎で表されるんじゃないんですか?

68 基本 例題 36 1次不等式の整数解 (1) (1)不等式 5x-7<2x+5を満たす自然数xの値をすべて求めよ。 3a-2 (2) 不等式 x <- 4 の範囲を求めよ。 000 を満たすxの最大の整数値が5であるとき、 定数αの値 指針 (1) まず, 不等式を解く。 その解の中から条件に適するもの (自然数) を選ぶ。 (2) 問題の条件を 数直線上で表すと、 右の図のようにな 基本34 基本 kk 5-x す整数 6 3a-2 x 指針 4 る。 のの 3a-2 4 を示す点の位置を考え、問題の条 件を満たす範囲を求める ▼自然数=正の整数 (1) 不等式から 3x<12 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 左 3a-2 (2)x< 4 を満たすxの最大の整数値が5であるから 1 2 3 4 * 解答 5 <- 3a-2 4 ≤6.. ...... (*) ara (st 4 3a-2=5のとき,不等 (0< 式は x<5 で,条件を満 3a-2 5- ・から 20<3a-2 4 たさない。J って、22 3a-2 4 よって a> ① =6のとき、不等 e>x 3 3a-2 8>* 式はx<6で,条件を満 ≦6から3a-2≦24 たす。 4 TO ① 26 よって as ② (S) 3 ① ② の共通範囲を求めて 22 51 3a-2 6 x 26 各辺に4を掛けて 20<3a-2≦24 各辺に2を加えて 22<3a≦26 22 26 各辺を3で割って <a≤ 3 3 注意 (*)は,次のようにして解いてもよい。 表す図 3 <a≤ 3 OSI ① わる。 検討 (22) >I 3 23 26 a

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

問題全部分かりません。解いていただきたいです。途中過程も記述していただきたいです

3 確率XとYを以下のように定義する。 1 W. P. 1/6 2 W. P. 16 -1 w. P. 1/5 = 3 W. P . 1/6 Y = 0 w.P. 112 4 5 w.P. 1/6 W. W. P 3/10 P 1/6 W P 1/6 (1)XとYの確率関数をそれぞれfx(水).fy(リ)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(21) Fy(y)とする。このとき、FX(0) FX (5) FY (0) FY (1) FY (2) の 値をそれぞれ求めなさい。 (3)Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5) Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1=2X+3の平均を求めなさい。 (8) Z1の分散を求めなさい。 (9) Z2 (10) Z2の分散を求めなさい。 4 (1)f(水) = -3Y+2の平均を求めなさい。 C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(t)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 X~N(50.102)であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第一四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対し7.2=2X-3Yと定義する. このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、この分散を求めなさい。 °

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。

H19 特別区 次の表は、 封鎖経済の下で、 すべての国内産業がP. Q及びRの三つの産業部門に分割されている とした場合の産業連関表であるが、 表中のア~カに該当する数字の組合せとして、 妥当なのはどれか。 産 中 最終需要 総産出額 投入 P産業 Q産業 R産業 中 PR 10 30 ア 100 190 間 投 Q 産業 20 80 60 イ ウ R 産 業 40 90 90 170 390 付加価値 総投入額 エ 110 190 オ 310 カ ア イ ウ エ オ カ 1 50 150 310 120 190 390 250 150 320 120 190 3 60 160 310 120 140 89 390 390 4 60 160 320 F 70 140 400 5 60 160 310 70 140 400 R4 特別区 【No.29】 次の表は、 ある国の、 2つの産業部門からなる産業連関表を示したも のであるが、この表に関する以下の記述において、 文中の空所A、Bに該当する数 字の組合せとして、妥当なのはどれか。 ただし、投入係数は、全て固定的であると 仮定する。 産出 中間 要 最終 総産出額 投入 産業 ARI 50 産業ⅡI 国内需要 純輸出 50 ア 10 イ 中間投入 産業ⅡI 25 100 40 35 200 付加価値 75 50 投入額 150 この国の、現在の産業Ⅰの国内需要 「ア」は Aである。 今後、産業Iの国内需要 「」 が70%増加した場合、 産業Ⅱの総投入額 「ウ」は B 1%増加することになる。 A B I 40 6 2 40 8 3 40 24 4 80 46 5 80 68 H28 特別区 次の表は、ある国の農業と工業の2つの部門からなる産業連関表であるが、この表に関する記述と して、文中の空所A~Cに該当する数字の組合せとして、妥当なのはどれか。 ただし、投入係数はす べて固定的であると仮定する。 出 中間 要 投入 10 最 終 工業 国内需要 純輸出 20 10 0 要 産出額 40 中間投入 工業 20 40 10 80 貸金 5 5 付加価値 利 5 15 総投入額 40 80 この国の国内総生産はAである。 また、 農業の国内需要と工業の純輸出がそれぞれ5増加した 場合、農業産出額はB増加し、 工業の産出額は 増加する。 A B C 1 10 15 25 2 20 15 25 3 20 20 20 4 30 15 25 5 30 20 20

回答募集中 回答数: 0
物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
1/682