学年

質問の種類

数学 高校生

数Bサクシードの218の問題が分りません [サクシード数学B 問題218] 2つの等差数列 2,5,8,......と6,11,16,......とに共通に含まれる項を順に並べると、どんな数列になるか。 答えの黄色でマークアップしているところが1番わからないです な... 続きを読む

234 サクシード数学B n>0であるから 36-n<0 よって n>36 これを満たす最小の自然数nは n=37 ゆえに,初項から第37項までの和が初めて負と なる。 (2) 数列 {a} の一般項は an=70+(n-1) (-4)=-4n+74 <0とすると よって -4n+74<0 74 n> =18.5 4 これを満たす最小の自然数nは n=19 ゆえに、数列{a} は第19項以降が負になるから, 初項から第18項までの和が最大となる。 その最大値は S18=2.18(36-18)=648 別解 ①から Sn=2n(36-n)=-2(n2-36n) =-2(n-18)2+2・182=-2(n-18)2+648 よって, Sm は n=18で最大値 648 をとる。 ゆえに、初項から第18項までの和が最大で,そ の最大値は 648 217 指針 (1) (2) +1-a=(一定) となることを示す。 a₁, as, A7, の添え字 (1,4,7, ・・・・・・) に着目すると,これは,初項 1, 公差 3 の等差数列である。 (1) an+1-an={-5(n+1)+6)-(-5n+6) =-5 よって, 数列{a} は等差数列である。 001 また,初項は a1=-5・1+6=1, 公差は-5 (2) 数列 {a} の項を,初項から2つおきにとって できる数列を {bm) とすると よって ゆえに b=a32 (n=1, 2, 3, ......) b=-5(3n-2)+6=-15n+16 6n+1-6„={-15(n+1)+16)-(-15+16) 000 =-15 したがって, 数列{bm} は等差数列である。 また,初項は b1=a1= 1, 公差は-15 218 {a}:2,5,8, {6}:6,11,16, ...... とすると an=2+(n-1)・3=3n-1 6„=6+(n-1)・5=5n+1 a=bm とすると 31-1=5m+1 よって 31=5m+2 ① これを変形すると 3(1+1)=5(m+1) 3と5は互いに素であるから, kを整数として Z+1=5k, m+1=3k すなわち1=5k-1, m=3k-1 と表される。 ここで, 1, mは自然数であるから,5k-1≧1 かつ3k-1≧1より kは自然数である。 ゆえに, 1=5k-1 (k=1,2,3,......) とおける。 したがって、数列{an}と数列{bm}に共通に含ま れる項は、数列{a} の第 (5k-1)項 (k=1, 2, 3, ......) で 3(5k-1)-1=15k-4 =11+(k-1)・15 よって, 初項 11, 公差 15 の等差数列になる。 参考 [①②のように変形する方法] 方法1) ①の右辺を5の倍数にするため、 3,3+5,3+5・2, を加えてみる。そのうち, 左辺が3の倍数とな るものを見つける。ここでは,3でよい。 ( 方法2 ) 31=5m+2 ① l=-1,m=-1は ① を満たす整数であり 3.(−1)=5.(-1)+2 ③ ① - ③ から 3(1+1)=5(m+1) ..... 方法2は,数学Aの 「数学と人間の活動」で 1次不定方程式を解く際に学ぶ方法である。 219 公比をとし,一般項を α とする。 12=3 (1) r= よって a=4.3"-1 1 - = 01 = 1 (2) また 5=160 √5 また α5=4・35-1=324 よって,=16-12-1 5-1 1 == 16 (3)555 よって=25 r=- 25 また = a = 25(√5) 5-1 =25.5= =1 ✓5\n-1 参考 an= 1=25/ ✓5-1 5 =52. √5 01=525-27-152-45 12 (4) 7= 3 2 --- -8 -1

未解決 回答数: 0
数学 高校生

オレンジマーカーの部分がわからないです。教えてください🙇

基本題 29 漸化式と極限 (4)・・・ 連立形 00000 P1(1, 1), Xn+1= 1 4 4 -xn+ yn, yn+1= 5 3 4 5 =2xn+1/yn (n=1,2)を満たす平 面上の点列 Pn(xn, yn) がある。 点列 P1, P2, くことを証明せよ。 はある定点に限りなく近づ 指針 点列 P1, P2, 解答 [類 信州大〕 p.36 まとめ, 基本 26 がある定点に限りなく近づくことを示すには, lim xn, limy がど もに収束することをいえばよい。 そのためには,2つの数列{x}, {yn} の漸化式から, Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意 のようになる。) Xa+1 = 1/4 x + 1/13/ -xn+ ①+②から P1(11) から x+y=2 3 xn+ yn (2) x=1,y=1 5 Yn ①, yn+1= Xn+1+yn+1=xn+yn よってxn+yn=Xn-1+yn-1=......=x+y=2 ゆえに yn=2-Xn 11 8 1 これを① に代入して整理すると Xn+1=- xn+ xn+1=- 20 5 32 11 32 特性方程式 変形すると Xn+1 Xn 31 20 31 11 8 Q=- a+ の解は 20 5 32 1 また X1- == 31 1+0=6 32 31 a= 31 32 32 ゆえに xn- 31 1 数列 xn- 20 31 32 1 よって limxn=lim 7118 31 31 また n→∞ n→∞ limyn=lim(2-x)=2- 2)=32 11 \n-1 31' 20 11. A-10 11 公比 の等 20 31 比数列。 32 30 31 31 y=2x から。 したがって, 点列 P1, P2, 32 30 ***** 31 31 は定点 (2220) に限りなく近づく。 注意 一般に,x=a, yi=b, xn=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる数列 {x},{yn} の一般項を求めるには,次の方法がある。 方法1 X+1+αyn+1=β(x+αyn) として α,βの値を定め、等比数列{x,+yn} を利 用する。 方法2 yn を消去して, 数列{x} の隣接3項間の漸化式に帰着させる。 すなわち, 1 xn+1=pxn+qyn から yn=Xn+1 P -Xn よって yn+1= Xn+21 Xn+1 q q q これらを yn+1=rxn+syn に代入する。

回答募集中 回答数: 0
1/1000