学年

質問の種類

数学 高校生

ウの意味がわかりません なにを言ってるんですか?

382 重要 例題 31 同じものを含む円順列 00000 白玉4個、黒玉が3個, 赤玉が1個あるとする。 これらを1列に並べる方法に 通り円形に並べる方法は通りある。更に、これらの玉にひもを通 し, 輪を作る方法は 通りある。 指針(円形に並べるときは,1つのものを固定の考え方が有効。 【近畿大 基本 18. ここでは、1個しかない赤玉を固定すると、 残りは同じものを含む順列の問題になる (ウ) 「輪を作る」 とあるから, 直ちに じゅず順列=円順列+2と計算してしまうと、こ 本事項 重複組合せ 異なる 解説 組合せ C 同じものを 重複を許し ようになる あるが、ここでは,同じものを含むからうまくいかない。 そこで,次の2パターンに分 の問題ではミスになる。 すべて異なるものなら「じゅず順列 円順列÷2」で解決す ける。 [A] 左右対称形の円順列は、裏返 すと自分自身になるから、 1個と 数える。 [B] 左右非対称形の円順列は、裏 返すと同じになるものが2通りず つあるから÷2 [A] [B] 裏返すと同じ (円順列全体) (対称形) よって (対称形) + 2 8! (ア) =280(通り) 4!3! 解答 同じものを含む順列 柿 の果物を 物があっ (考え方と の中から れぞれ 考える。 買物か りの左 りんご (イ)赤玉を固定して考えると, 白玉4個、黒玉3個の順列 1つのものを固定する の総数に等しいから 7! 4!3! -=35(通り) 47C4=7C3 (ウ)(イ)の35通りのうち, 裏返して自分自身と一致するも左右対称形の円環 のは、次の [1]~[3]の3通り。 [1] [2] [3] C 図のように、赤玉を一 上に固定して考えると よい。 また、左右対称形のとき 赤玉と向かい合う位置に あるものは黒玉であるこ ともポイント。 この の果 これ ■ 重 2 残りの32通りの円順列1つ1つに対して、裏返すと一 致するものが他に必ず1つずつあるから,輪を作る方法 35-3 は全部で 3+ 残りの32通りはお は、 対称形の円順列。 等 =3+16=19 (通り) (全体) ( か (対称形)+ で (非対称 = (対称形) + そ 2 練習 同じ大きさの赤玉が2個, 青玉が2個, 白玉が2個、黒玉が1個ある。これらの ④ 31 に糸を通して輪を作る。 (1) 輪は何通りあるか。 (2)赤玉が隣り合う輪は何通りあるか。 2

未解決 回答数: 1
物理 高校生

物理の電磁気、交流回路についての質問です。 (4)、(6)についてです。 僕は(2)で求めた電流についてのtの関数を積分してQ=CVに代入、同じく微分してV=L*(di/dt)に代入してそれぞれコンデンサーとコイルにかかる電圧をtの関数で表してからその関数の最大値を√2で割... 続きを読む

100 /10 10 7 100 (センター試験) 130 図1のように,抵抗値 R の抵抗,電気容量 C のコンデンサーおよ び自己インダクタンスLのコイルを直列に接続し, 交流電源につない だ回路がある。 オシロスコープで抵抗の両端の電圧を観測したところ, 図2のような周期T, 最大値 V の正弦曲線であった。 オシロ 電圧 スコープ Vo--- T m 2 T 抵抗 コイル 0 コンデンサー f t 時刻 - Vol 図2 図 1 (1) 交流の角周波数を求めよ。 以下, (5) 以外はTの代わりに を用いて答えよ。 (2) (3) この直列回路での消費電力 (平均電力) を求めよ。 また実効値を求めよ。 抵抗に流れる電流を時刻tの関数として表せ。 (4) コンデンサーにかかる電圧の実効値を求めよ。 また, 電圧 vc を時 刻tの関数として表せ。 (5)図2で,コンデンサーにかかる電圧が0になる時刻を Ost ST の範囲で求めよ。 (6)コイルにかかる電圧の実効値を求めよ。 また,電圧 v を時刻tの 関数として表せ。 \(7) 電源電圧の最大値 V, を求めよ。 また, ab間の電圧の最大値を 求めよ。 + (富山大 上智大 )

回答募集中 回答数: 0
数学 高校生

数Ⅰの問題です 写真の青線の部分の意味がわかりません 教えてください

基本 例題 45 √3 が無理数であることの証明 00000 命題「n は整数とする。n' が3の倍数ならば,nは3の倍数である」は真で ある。これを利用して, √3 が無理数であることを証明せよ。 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 基本44 √3が無理数でない (有理数である)と仮定する。このとき、3=r(rは有理数)と仮 定して矛盾を導こうとすると,「3=の両辺を2乗して、3=r」となり、ここで先に進 めなくなってしまう。そこで,自然数 α, bを用いて3=1(既約分数)と表されると仮 定して矛盾を導く。 解答 √3 が無理数でないと仮定する。 このとき √3 はある有理数に等しいから, 1以外に正の公約 a 数をもたない2つの自然数α, bを用いて3 = と表される。 b ゆえに a=√36 両辺を2乗すると a2=362. ・① よって, αは3の倍数である。 α2が3の倍数ならば,αも3の倍数であるから,kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって, 62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 したがって3は無理数である。 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という (数学A参照)。 下線部分の命題は問題 文で与えられた真の命 題である。 なお, 下線部 分の命題が真であるこ との証明には対偶を利 用する。

未解決 回答数: 1
数学 高校生

写真が横向きですみません。 黄色でマークしたところがわかりません。 なぜ3や5が出てくるのかが解説を見てもピンとこず,出てくる理由が知りたいです。あとなぜ3や5なのかもできれば教えていただきたいです。

正の約数の個数が28個である最小の正の整数を求めよ. (早稲田大) へ、 解答 28=2×2×7 であるから, 正の約数の個数が28個である整数 N を素因数分解すると、 (ア) N = d (1) N=ab () N=a'b'c' (ただし,p, g, rは自然数である.また, a, b, c は相異なる素数である) のいずれかの形で表される. (ア) N=d” のとき,約数の個数は+1であるから,p+1=28より,p=27である. このとき最小のNはa=2とした 227 である. (イ)N= dba (p≦q) のとき, 約数の個数は, (n+1) (g+1) であり、 (n+1)(g+1)=28 これより, 2≦p+1≦g+1に注意すると, (p, q)=(1, 13), (3, 6) abをできるだけ小さくするためには, a≧b とすべきであり, a,bは相異なる 素数なので、 α=3, b=2としたものが 最小である ・(p,g)=(1,13) のとき, 最小のNは,N=31.213 である. 2 ・(p,g)=(36)のとき,最小のNは, N=33.2°(=1728) である. (ウ) N=abic (p≦a≦r) のとき,約数の個数は(n+1) (g+1)(+1) であり, (n+1)(g+1)(r+1)=28 .. (p, q, r)=(1, 1, 6) このとき,最小のNは,N=5'31.2=(960) である. (ア)(イ),(ウ)より、約数の個数が28個である最小の正の整数は,960

解決済み 回答数: 1
1/1000