学年

質問の種類

数学 高校生

四角で囲んだ所って、どこからきたんですか??

478 例題 43 隣接3項間の漸化式 (3) 0000 この階段の (nは自然数) ある階段を1歩で1段または2段上がるとき, 方の総数を α とする。 このとき, 数列 {an} の一般項を求めよ。 数列 {an} についての漸化式を作り,そこから一般項を求める方針で行く 1歩で上がれるのは1段または2段であるから,n≧3のときれ 7段に達する 直前の 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前 [ (n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて、 まず隣接3項間の漸化式を導く。 → 漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 ここで 特性方程式の解α. βが無理数を含む複雑な式となってしまう。計算をらくに ためには,文字 αのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-通り [2] 最後が2段上がりのとき、 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2通り [1] 最後に1段上がる n段 n=2 [2] 最後に2段上がる n段 ここまで an-1 通り (n-1) 段 (-2) 段 ここまでα-2通り もっていく。 | (n-1) 段 よって an=an-1+an-2(n≧3) ...... (*) dants antitan (n ≥1) ①と同値である。 x=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって an+2-dan+1=β(aniュ-aan) az-aa=2-a ...... an+2-Ban+1=α(an+1-Ban) a2-ßa=2β...... ③ 和の法則 (数学 (*)でnnt 特性方程式 x2-x-1=0の x= 1±√5 2 a=1, a2=2 から ③から an+1-aan=(2-α)+ ..... ◄ar"-1 an+1-Ban=(2-β)α7-1 ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β) an-1 ...... (6) an+1 を消去。 1-√5 a= 1+√5 B= 2 ラ であるからβ-α=√5 α,β を値に直 また, α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして 12-a, 2-B 2-B=a² はαβの よって、⑥から an= 1+√5 \n+1 √(1+√5)-(1-√5) |- ④ 43 a=a2=1, an+2=an+1+3an 練習 次の条件によって定められる数列{an} の一般項を求めよ。 代入しても ここでは計算を ている。 類

回答募集中 回答数: 0
理科 小学生

何度も考えたのですが、水のすがたとゆくえ 雨水のゆくえ が分かりません。 全部答えられる人はお願いしますm(_ _)m

水のすがたとゆくえ 5 雨水のゆくえ ステージ たしかめよっ (わらない) をし続けます。 14A). くなる。 さい 前 学習日 月 " 1641 100 おたすけ 「ワンポイント 15175 自に見え ない。 あわ からさかんにあわが出てくる様 字を何といいま すか。 ① 100℃くらいになり、米の市はれる、じょ 鍋になるよ。 体 ( ② は何ですか。 ( は水がすがたを変えたもの です。 このあわ ・じょう 剣体 105(20) ばん長い ③アイは、それぞれ気体、えき体、固体のどれですか。 • 水を熱し続けると、ビーカーの中の水 水じょうは体で 自に見えないけれど 冷えるとオぷに なるので、見え るようになる。 ましょう。 の量はどうなりますか。 の理由 やすなのつぶの大きさと水のしみこみ方 同じの水を入れる。 2 土やすなのつぶの大きさと水のしみこみ方を調べます。1つ5 [15] ① コップに入れる土やすなの量は同 じにしますか。 2 りょう あな あなをあけ たコップ 校庭のすなのすな のしみこみ方は、 土やすなのつぶの大 きさによって、ち っているよ。 ②水が早くしみこむのはアイのどち同時に、同じのを入れる らですか。 ③水がしみこみやすいのは、土やすなのつぶが大きいほ うですか、小さいほうですか。 〈水のゆくえ) 校庭の ③ 2つの入れものに同じ量の水を入れ、 日なたにおきました。3はしなくても 1つ5 (10) ① 2~3日後、水が多くへっ う気になって文中 いくよ。 P ふた ているのは、アイ のどちらですか。 みず すい ②水が水じょう気となって空気中に (55 hat なん 出ていくことを何といいますか。 (

回答募集中 回答数: 0
物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
1/1000