学年

質問の種類

数学 高校生

この問題がわかりません 解説お願いします🙇‍♀️

重要 例題 218 4次関数が極大値をもたない条件 00000 関数f(x)=x4-8x3+18kx2 が極大値をもたないとき, 定数kの値の範囲を求め よ。 XAS 4次関数 f(x) x=pで極大値をもつ [福島大] 基本 211,214 x Þ f'(x) + 0 f(x) 極大 \ x=pの前後で3次関数f(x)の符号が正から負に変わる であるから、f'(x)の符号が「正から負に変わらない」条件を 考える。 3次関数f(x) のグラフとx軸の上下関係をイメー ジするとよい。 なお、解答の右横の図はy=x(x2-6x+9k) のグラフである。 f'(x)=4x-24x2+36kx=4x(x2-6x+9k) f(x) が極大値をもたないための条件は, f'(x) = 0 の実数 解の前後でf'(x) の符号が正から負に変わらないことであ ある。このことは, f'(x)のx3の係数は正であるから, 3次 方程式 f(x) = 0 が異なる3つの実数解をもたないことと 同じである。 k≥1 y k>1 k=1 347 3 x 解答 f'(x) = 0 とすると x=0 または x2-6x+9k=0 よって, 求める条件は,x2-6x+9k=0が k=0 y [1] 重解または虚数解をもつ [2] x=0 を解にもつ [1] x2-6x+9k=0 の判別式をDとすると D≤0 1-k≤0 35 12121=(-3)2-9k=9 (1-k) であるから 求め方は よって k≧1 [2] x2-6x+9k=0に x=0を代入すると k=0 したがって k=0, k≧1 おける関数の 6 x I 一般に, 4次関数 f(x) [4次の係数は正] に対し、f'(x)=0 参考 [4次関数の極値とグラフ] 3次方程式で,少なくとも1つの実数解をもつ。 その実数解をαとし、他の2つの解が実数 あればβ, y とする。このとき, y=f(x) のグラフは、次のように分類できる。 特に, 極大値を るのは①の場合だけである。 あり ける 小が入れ替わる)

未解決 回答数: 0
数学 高校生

四角で囲った部分がわからないです(Xの解) 特に二枚目の丸で囲んだ部分はどうしてこういうふうに言えるのかわからないです

354 基本 例題 223 係数に文字を含む3次関数 [類 立命館大] la を正の定数とする。 3 次関数 f(x)=x-2ax2+αxの0≦x≦1 における最大 値M (α) を求めよ。 基本 219 重要 224 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると,y=f(x) のグラフは右図のよう になる(原点を通る)。ここで, x=/1/3以外にf(x)=f(1/2)を 満たすx (これをαとする) があることに注意が必要。 a よって、1/3,α (/1/<α) が区間0≦x≦1に含まれるかどうか 3' a 3 <a a で場合分けを行う。 y4 f() O a a f'(x)=3x²-4ax+α²=(3x-a)(x-a) 解答 f(x) = 0 とすると x=147, a a 3' a>0であるから,f(x)の増減表は次のようになる。 以上から (x)はx=3 M(a)-( <a<1 すなわ <a< 2 のとき, f(x)はx=1で最大と M(a)=f(1) 0<a M Åsas 3 まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0から a ・<a ... ゆえに X- a x=/1/3であるから x x f'(x) + a 3 0 f(x) 大 a 0 + 極小 ここで,f(x)=x(x2-2ax+α²)=x(x-a)2から (+)-(-a), F(a)=0 3 27 -α 大 = 12/17 を満たすxの値を求めると, =1/1/3以外にf(x) 4 f(x)=から 4 x³-2ax² + a³x-17 a²=0 x3-2ax2+αx- α=0 (x-3) ( x − 4 27 (*) a)=0 0= CLAQ (*) 曲線 y=f(x) と直線 =は、x=号の y= 点において接するから、 f(x)-27 a³ 13(x- 3次関数の対称性の利目 樹 344 の参考事項で紹 の値を調べることもで 2つの極値をとる点 座標は 信 X=- 83 23 なお、p.344 で紹介 で割り切れる。このこと を利用して因数分解する とよい。 よって 3 -2a a² 0-27 a 5 Q2 3 9 x=- a 5 4 1 a a² 0 よって,f(x)の0≦x≦1における最大値 M (α) は,次のよ うになる。 3 9 13 としておきたい。 a 4 3 9 [1] 1< // すなわち α>3のとき 4 1 a -= M(a)=f(1) f(x)はx=1で最大となり 1 a²-2a+1 O 1 ・最大 大人の方針。 [1]は区間に極値をとる xの値を含まず、区間の 右端で最大となる場合 指針」 a a x 3 222は正の

未解決 回答数: 0
数学 高校生

数学II、微分の問題についての質問なのですが、下の写真の赤ボールペンで線を引いたところの、f'(x)が、なぜそうすると式が成り立つのか分かりません。下のf'(x)を用いた定積分の式は、何を表しているのか教えて頂きたいです🙇‍♀️

346 重要 217 3次関数の極大値と極小値の差 0000 |関数f(x)=x6x+3ax-4の極大値と極小値の差が4となるとき、定数の 値を求めよ。 X=8で極小値をとるとすると ページの例題と同じ方針で進める。x=αで極大値 x= f(a) f(B)を実際に求めるのは面倒なので、f(α)(B)をα-Bat Bag 大値と極小値の差が4f(α)(B)=4 (B)-(+)-4αβ を利用することで, a+B, aBのみで表すことができる。 (x)=3x²-12x+3a 解答 f(x)は極大値と極小値をとるから 2次方程式(x)=0 すなわち3x12x+3a= 0 ...... ① は異なる2つの実数 解α, β (a<β) をもつ。 よって、 ①の判別式をDとすると D>0 D=(-6)~3(3a)=9(4-a)であるから4-0 4 したがって a<4...... ② f(x)のxの係数が正であるから,f(x)はx=αで極大 x=βで極小となる。 f(a)-f(B)=(a³-ß³)-6(a²-B²)+3a (a-B) =(a-B){ (a2+αB+B2)-6(a+β)+3a} =(a-B){ (a+B)-αB-6(a+β)+3a} ①で,解と係数の関係より よって a+β=4, aβ=a a-B=-2√4-a (a-B)=(a+B)2-4aβ=42-4・a=4(4-a) <Bより、α-β< 0 であるから ゆえに f(α)-f(B)=-2√4-a (42-a-6・4+3a) 今回は差を考えるので、 x <βと定める。 α B... f'(x) + 0 (x) 極大極小 0 3次関数が極値をもつとき 極大値 > 極小値 ②から 4-a>0 よって√4-a>0 =2√4-a{-2(4-α)} =4(√4-a)³ 44-a=(√4-a)² f(a)-f(B)=4であるから 4(√4-a)=4 すなわち よって (√4-a)³=1 √4-a=1 Aa=1 の両辺を2乗し ゆえに, 4-α=1から a=3 これは②を満たす。 て解く。 定積分を用いた計算方法 自 討 f(α)-f(B) の計算は,第7章で学習する積分法を利用すると, らくである。 (a)-f(8)=f(x)dx=3(x-a)(x-B)dx=3{-1/(a-B)"} ←p.377 基本例題 240 (1) NE これにα-β-2√4-a を代入して,f(a)-f(B)=4(√4-a) となる。 の公式を利用。 関数f(x)=x+ax2+bx+c がx=αで極大値, x=βで極小値をとるとき, 17 f(a)-f(B)=1/2(B-a)となることを示せ。 [類 名古屋大]

未解決 回答数: 1
数学 高校生

この問題の(ⅰ)はa=0の時をなぜ確かめているんですか?

368 第6章 微 Think 例題 198 実数解の個数(2) **** 3次方程式-3a'x +40=0が異なる3つの実数解をもつとする。栄 数αの値の範囲を求めよ. 114 考え方 例題 197 (p.367) のように定数を分離しにくい。 このような場合は,次のように3次 数のグラフとx軸の位置関係を考える。 3次方程式 f(x)=0が異なる3つの実数解をもつ 3次関数においては、 y=f(x) のグラフがx軸と3点で交わる (極大値)>0 かつ (極小値)<0 (極大値)×(極小値) < 0 (極大値)> (極小値 ) 解答) f(x)=x-3ax+4a とおくと f'(x)=3x²-3a²=3(x+a)(x-a)...... ① 方程式 f(x) =0 が異なる3つの実数解をもつ条件は、 y=f(x) のグラフがx軸と3点で交わること つまり、(極大値)×(極小値) <0 となることである. (i) ①より、f'(x)=0 のとき, a>0のとき、 y=f(x) A f(a)f(B) f(x)が極値をもっ f(x)=0が異なる? つの実数解をもっ f'(x)=0の 判別式) > 0 x=-a,a x -a 増減表は右のよう f'(x) + 0- 20 a (p.353 参照) + 直接, 増減表を書いて になる. f(x) 極大 極小 極値を調べたが、 a0 のとき, X a -a 増減表は右のよう になる。 f'(x) + f(x) 0 20 (+) 極大 極小 a=0 のとき,f(x)=xより,f(x)=0 の解は x=0 (3重解)となり不適 (ii) f(-a)xf(a)=(2a3+4a)(-2a3+4a) =-4a² (a²+2)(a2-2)<0 (i)より, a=0 であるから,a>0,d²+2>0より, a²-2>0 これより、 (a+√2) (a_√2)>0 a<-√2√2<a よって、求める αの値の範囲は, a<-√2√2<a 3次方程式(x)=0が異なる3つの実数解をもつ y=f(x)のグラフがx軸と3点で交わる (極大値)>0かつ (極小値) <0 (極大値) X (極小値) < 0 f'(x) =0 の判別式を 使ってもよい。 判別式をDとすると D=-4-3(-3a²) =36a2>0 より a<0, 0<a (a=0) となる. Focus 注> 例題198 で (1) f(x) が極値をもつ (Ⅱ) (極大値)×(極小値) <0 満たさないと (極値

未解決 回答数: 1
1/35