学年

質問の種類

数学 高校生

二次方程式の解の判別です。 (2)の指針と解説にある、判別式がゼロより小さいの一方だけが成り立つという意味がわかりません。解説お願いします🙏

74 基本 例題 41 2つの2次方程式の解の判別 は定数とする。 次の2つの2次方程式 ①(k+8)x2-6x+k=0 x2-kx+k2-3k=0 について,次の条件を満たすんの値の範囲をそれぞれ求めよ。(P- (1) ①,② のうち, 少なくとも一方が虚数解をもつ。 (2)①,② のうち, 一方だけが虚数解をもつ。 ②(1) 1)S+ (E) ②については,2次方程式であるから,x2の係数について,k+80 に注意。 ①,②の判別式をそれぞれD, D2 とすると,求める条件は (1) Di<0 または D2<0 →解を合わせた範囲 (和集合) 基本40 (2)(1020) または (D120 かつD2<0) であるが,数学Ⅰでも学習したよ うに, Di<0,D2<0 の一方だけが成り立つ範囲を求めた方が早い。 チャート式基礎からの数学Ⅰ+Ap.200 参照。 CHART 連立不等式 解のまとめは数直線 ②の2次の係数は0でないから k+8≠0 すなわち k≠-8 解答 このとき,①,②の判別式をそれぞれ D1, D2 とすると(( ‚α D₁=(−k)²−4(k²-3k)=-3k²+12k=−3k(k−4) -+- D₂S (4) 4 =(-3)-(k+8)k=-k2-8k+9 8+ (S-) SI+SA 0<a =-(k+9)(k-1) 1)x+ (1) 求める条件は,kキー8のもとで D1 <0 または D2<0 DI<0からん(k-4)>0 キー8であるから ( 普通, 2次方程式 ax2+bx+c=0とい うときは,特に断りが ない限り, 2次の係 αは0でないと るために ( ゆえに<0,4<k+- 30k<-8,-8<k<0, 4<k..... ③ > D<0 から (k+9)(k-1)>0 2 実③ よって ...... k<-9, 1<k 4 JS1=s-9-8 求めるんの値の範囲は,③と④ の範囲を合わ #k<-8, -8<k<0, 1<k 01 4 >> (2) ①,② の一方だけが虚数解をもつための条件 は, Di<0, D2<0 の一方だけが成り立つことで あるある 多くの場合、2次方 -9-8 91 ゆえに、③、④の一方だけが成り立つkの範囲 を求めて-9≦k<-8,-8<< 0, 1 <k≦4

解決済み 回答数: 1
数学 高校生

(2)について、なぜ解と係数の関係で作った2次方程式の解は、条件を満たす数になるのでしょうか。

-1+√51-1-√51 を2つの解とする2次方程式を1つ作れ。 2 2 和が 3. 積が3である2数を求めよ。 • ◇(1) 2次方程式の作成 2数が与えられたら,まず2数の和 積を計算する。 2 数α,βを解とする2次方程式の1つは (a+B)x+αβ=0 (x-a)(x-β)=0 *0 積 この左辺を展開すると マイナスに注意 (2)pgの2数をα βとすると a+β=p.aβ=q 解答 したがって,解と係数の関係から, 2次方程式px+g=0の2つの解が求める2炎 和積 となる。 (1)2数の和は1+√5i+-1-5i=-1. 2 2 2数の積は1+5i-1-5i_(-1)-(√5) _ 2 4 32 -1+√5i 2 -1-√5i B= 2 3 よって、 求める2次方程式は x2+x+ =0 ① これでも正解。 2 ①の両辺を2倍して 2x2+2x+3=0 係数を整数にする。 (2) 2数をαβとすると α+β=3, aβ=3 -200+ したがって,α β は2次方程式 x2-3x+3=0の2つの解で ある。この2次方程式を解いて x= 3±√3i 2 よって, 求める2数は 3+√3i 3-√3i 2 2 (和)x+(積) = 0 a+β=3, aβ=3を連立し て解くよりも早い。 2次方程式を作成する問題の答案 (1)解答の①の両辺を4倍した 4x2+4x+ 6 = 0 なども誤りではないが, 2次方程式を求める問 題では,その係数が最も簡単なものを考えるのが普通である。 (2) 上の解答では,理解しやすくするためにα, β を使ったが,実際の答案では, 「和が3,積が3である2数は2次方程式 x2-3x+3=0の解である」 としてもよい。 練習 46 (1) 次の2数を解とする2次方程式を1つ作れ。 (ア) 3, -5 (イ) 2+√5.2-√5 () 3+4i, 3-4i (2) 和と積が次のようになる2数を求めよ。 (ア)和が7. 積が3 (イ) 和が -1, 積が1

解決済み 回答数: 1
数学 高校生

この問題の、波線が引いてある部分って、因数分解する時に、iが入ってこないように(実数の範囲で因数分解)するために、√内が2乗の形にならないといけないってことですか?

敦 ) 分解。 分解。 さいように 因数分解ができるための条件 重要例題 44 基本43 x2+3xy+8y2-3-5y+kがx,yの1次式の積に因数分解できるとき,定数k の値を求めよ。 また, その場合に,この式を因数分解せよ。 〔東京薬大〕 指針 与式が x,yの1次式の積の形に因数分解できるということは, (与式)=(ax+by+c)(px+qy+r) 解答 の形に表されるということである。 恒等式の性質を利用 (検討 参照) してもよいが,ここで は,与式をxの2次式とみたとき, = 0 とおいたxの2次方程式の解がyの1次式で なければならないと考えて,kの値を求めてみよう。 ポイントは,解がyの1次式であれば,解の公式における内がyについての完全平 方式となることである。 P=x2+3xy+2y2-3x-5y+kとすると P=x2+3(y-1)x+2y2-5y+k P=0を x についての2次方程式と考えると,解の公式から x2の係数が1であるから, xについて整理した方がら くである。 x=-3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 _-3(y-1)±√y2+2y+9-4k 2 Pがxyの1次式の積に因数分解できるためには、この解が 1次式で表されなければならない。 y よって、根号内の式y2+2y+9-4k は完全平方式でなければな らないから,y2+2y+9-4k=0 の判別式をDとすると D/4=12-(9-4k)=4k-8=0 ゆえに この2つの解をα β とす ると, 複素数の範囲で考え て P=(x-α)(x-B) と因数分解される。 k=2 < 完全平方式 ⇔=0が重解をもつ ⇔判別式 D=0 -3(y-1)±√(y+1)。 _ -3y+3±(y+1) このとき x= 2 すなわち x=-y+2, -2y+1 よって 2 P={x-(-y+2)}{x-(-2y+1)}=(x+y-2)(x+2y-1) 恒等式の性質の利用 x2+3xy+2y2=(x+y)(x+2y) であるから,与式がx、yの1次式の積に因数分解できるとする と, (与式)=(x+y+a)(x+2y+b) ・・・・・・① と表される。 ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+ab となるから、両辺の係数を比較して これから,kの値が求められる。 a+b=-3,2a+b=-5, ab=k A 練習 次の2次式がxyの1次式の積に因数分解できるように、定数kの値を定めよ。 +44 また、その場合に,この式を因数分解せよ。 (1)x2+xy-6y2-x+7y+k (2)2x2-xy-3y²+5x-5y+k 73 2章 9解と係数の関係、解の存在範囲

解決済み 回答数: 1
1/132