学年

質問の種類

理科 中学生

大問9の(4)番です。正解はグラフの横3マス目までが2nで、4マス目は3nに来るように線が引かれるそうです。解説お願いします、、、

浴置の方 (6)Xのように、酸の陰イオンとアルカリの陽イオンが結びついてできた物質を、一般に何というか。 9. 中和について調べるために、 次の実験を行った。 ●試験管A~C にそれぞれうすい塩酸3.0cmをとり、少量のBTB 液を加えた結果、 全ての試験管の水溶液が黄色になった。 Q1 図2 イオンの 45 ②試験管B に 1.5 cml、Cに3.0gのうすい水酸化ナトリウム水溶 液をそれぞれ加えた結果、 試験管Cの水溶液だけ緑色になった。 (1) 塩酸の① 陰イオンの名称と② イオンに別れる変化を化学式 で書け H+ C H+ C 0 0 5 10 15 20 OMS 加えた水酸化ナトリウム 水溶液の体積(cm) (2) 水酸化ナトリウム水溶液の① 陽イオンの名称と② イオンに別れる変化を化学式で書け。 (3) 図1は、 における試験管Bの様子を、 水以外について粒子のモデルを表したものである。 これを参考に ②における試験管Cの水溶液の様子を表した図を下から選びなさい。 ® + (4)実験で使ったものと同じ塩酸と水酸化ナトリウム水溶液を使って、 15cmの塩酸を入れたピーカーに、20kcalの 水酸化ナトリウム水溶液を少しずつ加え、混ぜ合わせた。 図2の破線は、加えた水酸化ナトリウム水溶液の体積 と、混ぜ合わせた水溶液中のナトリウムイオンの数の関係を表したグラフである。 最初にピーカーに入れた塩酸 15cm 中の全イオン数 (陽イオンと陰イオンの数の合計)を2n個とすると、 ビ ーカーの水溶液中の全イオン数はどのように変化するか。 解答欄の図に実線で表しなさい。

回答募集中 回答数: 0
数学 高校生

この問題の赤で囲った部分の1が4の位置に行くとき以外の考え方を教えて下さい

*** (2) 1の行き場所は1の位置以外の 3通り 3組合せ 373 (1,2,3,4) (x, *,*,*0) ここで、1が4の位置に行ったと 1が1の位置に行く と、不適である。 2,3,4が1~3の 位置に並ぶと考える。 こ する。 (i) 4が1の位置に行く場合 (1, 2, 3, 4) (4, O. O. 1) 残りの2つの数字の完全順列を考えてW(2) () 4が1の位置以外に行く場合 4を1と考えると (1,2,3,4) 「4が1の位置以外」は 「1が1の位置以外」 と考え ない 数え よって 1が2の位置, 3の位置に行っても同様に考 えられるから,(i), (ii)それぞれ3通りずつある. よって,W(4)=3(W(3)+W(2))=3(2+1)=9 られるので、3つの数字の完全順列を考えればい。 したがって, W(3)=2 (1,2,3,4) (0, 0, 0, 1) 2, 3, 4 ここで, 「41,22,3×3」 だから 4を1と書 き直すと, wwwww wwww 「11,22,33」 となり、3つの数字 の完全順列と同じに 注) W (5) について, 考えてみよう。 (1,2,3,4,5) 1は1の位置にこないので省略 なる. 3.00 の完全 る。 練習 188 **** (X, 1がの位置に行く場合で考えると, たとえば1が2の位置に行くとき, (i) 2が1の位置に行くとき, (ii) 2が1の位置以外に行くとき に分けて考えると、次のようになる。 1 2 3 4 5 × 21 X A × 21 × 54 X21435 O21453 O21534 × 215 x 3 2008-1-5 1 2 3 4 5 12345 X3 12 XX X 314 25 O31254 O31524 O4 1 253 x 51 24 X41235×4 1825 O51234 x 5 1 2 3 O41523 123 45 031452 第6章 × 31 5 X 2 x 4 1 8 5 2 O41532 x 51 x 2 O51432 O51423 (3.4.5)の完全順列 2を1として考えたときの4つの数の完全順列 W(3)=2 W(4)=9) 1が3.4.5の位置に行っても同様に考えられるから、 W(5)=4 (W(3)+W(4))=4(2+9)=44 一般にn個の数 1, 2, 3, ・・・・, n の完全順列の総数を W (n) とすると, W(1) = 0, W(2)=1,W(n)=(n-1){W(n-1)+W(n-2) (n≧3) このような式を漸化式という. (数学B 「数列」 で学ぶ) また,W(n) を、モンモール数という. 2人1組のペアが5組いて, ペアごとに A, B, C, D. E の机をもっている.い ま、ペアのうちの1人が, A,B,C,D,E と書かれたくじを引いて, ペア替え 違うパートナーになる場合は何通りあるか

未解決 回答数: 1
数学 高校生

数a、順列です。47番の(2)がわかりません…解説にある、「合わせて36個あるから〜4である。」がなぜ合計36個で42番目の数字がわかるのでしょうか…?どなたか解説していただけると助かります(_ _) (1番右の写真が問題、残り2枚は解説回答です。)

■数字は5 り 3通り 別解(5桁の偶数) = (5桁の整数) (5桁の数 であるから,(1),(2)より 600-288312 (個) 47 (1) 3の倍数になるのは,各位の数の和が 倍数になるときである。 よって、3の倍数になる3個の数字の組は (0, 1, 2), (0, 2, 4), (1, 2, 3), (2, 3, 4) 10,120,24) のとき 百の位の数字は0を除いた通り 残り2個の数字の並べ方は 2! 通り よって 2×2×2!=2×2×2.1 = 8 (個) 1,2,3,2,3,4) のとき 3個の数字の並べ方は3! 通り よって 2×3! =2×3・2・1=12 (個) [1], [2] から, 求める個数は 3通り 参考 は 8+12=20 (個) 命題「3桁の整数Nが3の倍数になるのは, Nの各位の数の和が3の倍数のときである」は, 次のように証明できる。 3桁の整数 N は,百の位を a, 十の位を b, 一の 位を c とすると, N = 100α+106 + c で表される。 N= (99+1)a+ ( 9 + 1) + c =9(11a+b)+a+b+c= 9=3・3より, 9(11a+b)は3の倍数であるから, Nが3の倍数になるのは各位の数の和α+b+c が3の倍数のときである。 (2) 百の位の数字が 1, 2, 3である3桁の整数はそ れぞれP2=12個ずつ, 合わせて36個あるから よって, (5-1)!× 長の真正面に向かい 49 (1) 議長の位置を固 よって、 求める並び方 等しいから 61-6-5-4-3-2 議長の位置を固定 書記は議長の両隣以 法は5通り 委員 6人は残りの席 よって、 求める並び 5x6!=5x6-5 別解求める並び方の ら, 議長と書記が である。 8人全員の並び方に 議長と書記が隣り (7-1)! x したがって, 求め (8-1)!-(7- 50 1つの面の色を する。 残り3つの面の色 り方は3色の円 あるから、 求め 方は (3-1)! 516人から4人 6P

未解決 回答数: 1
1/1000