学年

質問の種類

数学 高校生

(1)の四角で囲ってる部分がよくわからないです。なんでこの計算になってるのかひとつずつ教えて欲しいです。お願いします🙇‍♀️

00 二項 1 の 次の等式を満たす整数x、yの組を1つ求めよ。 例題 126 1次不定方程式の整数解(1) 11x+19y=1 MART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 00000 (2) 11x+19y=5 p.463 基本事項 1,2 11と19は互いに素である。 まず, 等式 11x+19y=1のxの係数11 との係数 19 に 互除法の計算を行う。 その際, 11 <19 であるから, 11 を割る数, 19 を割られる数として 割り算の等式を作る。 =11,6=19 とおいて,別解 のように求めてもよい。 の係数との係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を5倍すると 11(5x)+19(5y)=5 よって、 (1) で求めた解を x=p, y = g とすると, x=5p, y=5g が (2)の解になる。 (1) 465 3=2・1+1 移すると 1=3-2.1 1=2- JJ 3=11-8・1 4章 15 319, 5, 次 めあうに いる 煮)。 (1) 19-11-1+8 移すると 8=19-11・1数解を 別解 (1) α=11,b=19 さ 取る 11=8・1+3 移すると 311-8.1とする。 8=3・2+2 移すると 28-3・2819-11・1=b-a 残る。 4個 よって 1-3-2-1-3-(8-3.2).1 方形 ちょ ごき すなわち 長さ 回数。 ユークリッドの互除法と1次不定方程式 11 33 =8・(-1)+3・3=8・(-1)+(11-8・1・3・ =11・3+8・(-4)=11・3+(19-11・1)・(-4) =11.7+19.(-4) 11・7+19・(-4)=1 ...... ① ゆえに、求める整数x、yの組の1つは x=7,y=-4 (2)①の両辺に5を掛けると すなわち 11•(7·5)+19•{(−4)•5}=5 よって、求める整数x、yの組の1つは 11・35+19・(-20)=5 x=35,y=-20 + =a-(b-a) 1=2a-b 2=8-3-2 =(b-a)-(2a-b)・2 + =-5a+36 (2)の整数解にはx=-3, y=2 という簡単なものも ある。このような解が最初に発見できるなら,それを 答としてもよい。 PRACTICE 126 次の等式を 13-2・1 =(2a-b)-(-5a+3b).1 =7a-4b すなわち 11・7+19・(-4)=1 よって求める整数x、yの 1つはE x=7, y=-4 慎重に 介 ート

未解決 回答数: 1
数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
1/1000