学年

質問の種類

数学 高校生

青い矢印の式の変形のやり方が分かりません。🙇‍♀️

基本 例題 186 曲線の漸近線 曲線 (1) y= (2)y=2x+√x-1 x2-4 指針 前ページの参考事項 ①~③を参照。 次の3パターンに大別される。 ①x軸に平行な漸近線 limy または limy が有限確定値かどうかに注目。 の漸近線の方程式を求めよ。 p.314 参考事項 ①〜③ 315 ②x軸に垂直な漸近線 またはy → -∞ となるxの値に注目。 軸に平行でも垂直でもない漸近線 181 X (有限確定値)なら, 直線 y=ax+bが漸近線。 lim2=α (有限確定値) lim(y-ax)=b 6 2 (x→∞をx→∞とした場合についても同様に調べる。) ②のタイプの漸近線は、分母=0 となるxに注目して判断。また,分母の次数> 分子の次数となるように式を変形すると、③のタイプの漸近線が見えてくる。 (2)式の形に注目しても,①,②のタイプの漸近線はなさそう。しかし,③のタイプの漸 近線が潜んでいることもあるから,で示した極限を調べる方法で,漸近線を求める。 解答 x3 (1)y= 4x =x+ x2-4 x2-4 lim y = ∞, 2±0 x-2±0 lim=∞ (複号同順) 定義域は,x2-4≠0から xキ±2 漸近線 (つまり極限)を調べ 4 4x また lim (y-x)=lim x lim = 0 →∞ xx24 x→±∞ 4 1-- x² 以上から,漸近線の方程式は x=±2, y=x (2) 定義域は,x2-1≧0 から x≤-1, 1≤x limy=± ∞ となる定数の値はないから, x軸に垂直な漸 x-p 近線はない。 lim=lim2+ √x-1)=lim(2+ X-00 X x→∞ x lim(y-3x)=lim(√x2-1-x)=lim 1100 1 =3から 2 x² -1 -= 0 x→∞ x→∞ √x2-1+x よって、直線 y=3x は漸近線である。 x-gx lim Y = lim2+ 811X x-1)= = lim (2- 1 x 8 やすくするために, 分母の次数分子の次数 の形に変形 (分数式では, このような式変形が有効)。 (1)x-2y4 3√3- y=x x2+0 -2 121 -2√3 0 2√3 xx-24 -3√3 x=2 -t--2- 1-2- (*) x-8 であるから、 x<0として考えることに注 (2) 意する。つまりxxx ya =1(+) から 2 t -y=3x x lim(y-x)=lim(x+√x2-1)=lim X-8 x→∞ よって、 直線 y=xは漸近線である。 以上から、漸近線の方程式は 1 =0 xx2-1 y=3x,y=x -1 -2 ★式を求めよ。

未解決 回答数: 1
数学 高校生

(2)の解説でで(-1)^2-2a(-1)+2はなんで0にならないんですか??

(2) (1)より (x+1)(x²-2ax+2)=0 ......① x=-1, x2-2ax+2=0... ② 51 ①が異なる3つの実数解をもつので、 ②がx=-1 「以外の異なる2つの実数解をもてばよい. (-1)2-2a(-1)+2=0 よって, a²-2>0 Ja=-3 a+ 異なる2点で交わるから> ②がx=-1 を解に もつと異なる3つの 解にならない la<-√2/√2<a したがって, 求めるαの値の範囲は a<-, - <a<-√2, √2<a 2' 注 (1) (解I) と (解ⅡI) の違いは, (解I)ではf(x)のxに何を代入 するかを自分で見つけてこないといけないのに, (解ⅡI)ではその必要 基礎問 には、入 問題を言 「基礎 ためてあ 題され 基礎問 教科 特に でき 精講 カテ は すく 30 高次方程式 (1)3次式(2a-1)x2-2(a-1)x+2 を因数分解せよ. (2) に関する方程式 x³-(2a-1)x²-2(a-1)x+2=0 が異なる3つの実数解をもつようなαの値の範囲を求めよ、 (1)3次式の因数分解といえば, 因数定理 (27 もちろん,これで解答が作れます (解I) が, 数学Ⅰで 文字が2種類以上ある式を因数分解するときは,次数の一番 い文字について整理する ということを学んでいます. (I A4 復習も兼ねて、こちらでも解答を作ってみます(解ⅡI). II) 第2章 がありません. 代入するπは,土 定数項の約数 最高次の係数の約数 しかないこと が知られています. だから 代入するxの値の候補は±1, ±2の4つ (1)より (1次式) (2次式)=0 の形にできました. しかないのです. (1次式) = 0 から解が決まるので, (2次式) =0 が異なる2つの実数 注 は因数分解できないので, (判別式) 0 を使います. 2-2ax+2=0 もてばよいように思えますが,これだけでは不十分です. 解答 ポイント (1) (解Ⅰ) 高次方程式は, 2次以下の整式の積に因数分解して考 える f(x)=x-(2a-1)-2(a-1)x+2 とおく. f(-1)=-1-(2a-1)+2(a-1)+2 「f(x)=」 とおくの =-1-2a+1+2a-2+2=0 は,因数定理を使う 準備 注 因数分解できなくても、このあと学ぶ微分法を使うと解決します。 (95) =(x+1)+2(x+1)-2.x(x+1)a _=(x+1){(x+2)-2ax} =(x+1)(n-2ax+2) =(z+x+2.c+2)-2(x2+ma (解Ⅱ) f(x)=(x+1)(x²-2x+2) x³-(2a-1)x2-2(a-1)x+2 よって, f(x)は+1 を因数にもち, xに数字を代入した 演習問題 30 複素数 1+iを1つの解とする実数係数の3次方程式 ときに, αが消える x+ax2+bx+c=0 ......① ことから,f(-1)=0 を想像する について、 次の問いに答えよ. (1) b, c をαで表せ . (2) ①の実数解をαで表せ. (3) 方程式①と方程式-bx+3=0 ・・・・・・ ② がただ1つの実数解 を共有するとき, a, b c の値を求めよ.

未解決 回答数: 1
数学 高校生

(2)の解答にあるaはどこから来たのか教えて欲しいです!! あと、剰余たの定理でこのページのポイントにある 「f(x)をg(x)h(x)でわったときのあまりをR(x)とする」剰余の定理のどういう時に使えるか教えて欲しいです!

第2章 基礎問 44 第2章 複素数と万住式 26 剰余の定理 (III) 1/2 (1) 整式P(x) をæ-1, x-2, x-3でわったときの余りが、そ れぞれ6, 14, 26 であるとき,P(x) を (x-1)(x-2) (x-3)で わったときの余りを求めよ. (2) 整式P(x) を (x-1) でわると, 2x-1余り, x-2でわると 5余るとき,P(z) を (x-1)(x-2)でわった余りを求めよ。 精講 (1) 25 で考えたように、余りはax2+bx+cとおけます。 あとに a, b, c に関する連立方程式を作れば終わりです。 しかし、3文字の連立方程式は解くのがそれなりにたいへんです そこで,25の考え方を利用すると負担が軽くなります。 (2)余りをax+bx+c とおいてもP (1) P(2) しかないので, 未知数 3つ 等式2つの形になり, 答はでてきません. 解答 (1) 求める余りは ax2+bx+c とおけるので, 128 -2a-2b+26=6 -24-6+26=14 [a+6-10=0 l2a+b-12=0 .. a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 45 S ( 注 (別解)のポイントの部分は,P(3)=R(3) となることからもわ かります. (2) P(x) を (x-1)(x-2) でわった余りをR(x) (2次以下の整式) と おくと,P(x) = (x-1)(x-2)Q(x) +R(z) と表せる. ところが,P(x) は (x-1)2でわると2-1余るので,R(x) も (x-1)2でわると2x-1余る. よって, R(x)=a(x-1)2+2x-1 とおける. .. P(x)=(x-1)(x-2)Q(x)+α(x-1)'+2x-1 P(2) =5 だから, α+3=5 a=2 よって、 求める余りは, 2(x-1)'+2x-1 すなわち, 2x²-2x+1 次式でわった余り P(x)=(x-1)(x-2)(x-3)Q(x)+ax²+bx+c は2次以下 と表せる. P(1)=6,P(2)=14,P(3) = 26 だから, [a+b+c=6 4a+26+c=14 ・・・① ....2 連立方程式を作る ポイント f(x)をg(x)h(x)でわったときの余りをR(z) とす ると f(x)をg(x)でわった余りと R(x)をg(r)でわった余りは等しい。 (h(x) についても同様のことがいえる) 9a+3b+c=26 ......

未解決 回答数: 1
1/1000