学年

質問の種類

数学 高校生

解説お願いします。 (2)の問題で、12C3になる理由が分かりません。 分かりやすく教えていただけると嬉しいです。

重複組合せ A, B, C, D の4種類の缶詰を合わせて9個買うとき, (1)それぞれの缶詰を少なくとも1個は買う場合, 買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか。 種類ごとにまとめて並べる (産業無料) 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 理するとしたら, 多くの人が「左から A, B, C, Dの順に,同じ種類の缶詰をまとめて並べる」とする のではないか. 例えば,Aを3個, Bを4個, Cを1個, Dを1個なら AAABBBBCD となる. そして、 この文字列は, AとBの境, BとCの境, C とDの境が決まれば決まる (復元できる). AAABBBBCD ← 000100001010 つまり右のようにA~D を◯, 境を仕切りで表せば,9個の○と3個のの並びと対応する . (1)は, 仕切りが両端にはなく,かつ隣り合わない. (2) は並び順は自由である。 このような○とい の並べ方の総数を求める. 解答 (1)○を9個並べておき,○の間(図の↑)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順にA, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 8.7.6 3.2 の数は仕切りの位置の選び方と同じで, 8C3= ↑↑ 00|000|0|000 A B C D =56(通り) (2) ○を9個を3個, 横一列に自由に並べ, で区切られた4か所の○の 個数 (○がないところは0個)を左から順にA, B, C,D の個数とする. この並べ方と題意の買い方は 000||00|〇〇〇〇 ABCD 買い方を決めれば仕切りの ←が決まる。 仕切りの位置 ば違う買い方と対応する。 12・11・10 対応するから,求める場合の数は, 9+3C3= =220 (通り) 3.2

解決済み 回答数: 1
数学 高校生

数学A 順列 カタラン数 写真の赤ペンを引いたところがわかりません。 なぜ→3、↑5の場合のみを考えるのでしょうか?→4、↑4でも波線部分を通る場合もあるのにそれについては考えないのですか? 教えてくださると嬉しいです🙏 質問わかりにくくてすいません。質問についてわか... 続きを読む

参考事項 カタラン数 an個, bn個の計2個を1列に並べるとき, a よりも多くの6が先に並ばない ような並べ方の総数を カタラン数(*1) という。この数について考えてみよう。 例えば,n=1のときabの1通り; n=2のとき aabb, abab の2通り; つまり, n番目のカタラン数を C とすると n=3のとき aaabbb, aababb, aabbab, abaabb, abababの5通り [図1] C=1, C2=2,C3=5 しかし, n=4のとき,同じように列を書き出して調べるのは大変。 そこで,αを, b を ↑に対応させると, カタラン数は, [図1] のA からBに行く最短経路の数と同じになる。(*2) この数は, 前ページの検討でも説明したように, 各交差点を通過す る経路の数 ([図1] の数字) を書き込むことによって, 求めることが できる。 →図から14通り 2 55 12 13 A 111 [図2] B' ... ① 1 I また, 練習 30 の検討 (解答編 .265) のように考えてみると, [図2] のような破線部分の経路があるものと仮定したとき, Aから Bに行く最短経路は4個 14個の順列と考えて 8C4 更に, A から B' に行く最短経路は3個 15個の順列と考えて 8C3 ② ゆえに、 ①②から ***** 8C4-8C3-70-56=14 証明は省略するが, 同様に考えることにより, Cn=2Cn-2Cn-1 であ ると推測できる。 ここで (2n)! (n-1)!{2n-(n-1)}! (2n)! 2nCn-2nCn-1= n!(2n-n)! (2n)!{(n+1)-n} (2n)! 1 = = n!(n+1)! n!(n+1)! n+1 n!n! よって, カタラン数 C は次のように表される。 == A (2n)! 2n Con = n+1 123456 14 B 6 4 7 8 Cn=2nCn-2nCn-1= 2nCn n+1 カタミンの n カタラン数 Cn 12 5 14 42 132429 1430

解決済み 回答数: 1
1/218