学年

質問の種類

数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 高校生

グレーのマーカーの部分を教えてほしいです。

重要 例題 55 関数の作成 図のような1辺の長さが2の正三角形ABC がある。 点PA が頂点Aを出発し,毎秒1の速さで左回りに辺上を1周す るとき,線分 AP を 1辺とする正方形の面積yを,出発後 の時間x (秒) の関数として表し、そのグラフをかけ。 B ただし、点Pが点Aにあるときは y=0 とする。 CHARTS OTTT- はは正方形の面積で APを1辺をするからな か→ x=2,4 (S) 平方の定理から求める。 3章 y=AP2 であり, 条件から,xの変域は 0≤x≤6 [1] x=0, x=6 のとき よって [2]0<x≦2 のとき y=x2 点Pが点Aにあるから 点Pは辺AB上にあって y=0 AP=x P x-4 [3] 2<x≦4のとき 点Pは辺BC上にある。 辺BCの中点をMとすると, BCAM であり よって, 2<x<3のとき BM=1 B-PM x-2 ると PM=1-(x-2)=3-x 3<x≦4のとき ここで AM=√3 PM=(x-2)-1=x-3 ミルガウス 7 関数とグラフ ゆえに, AP2=PM2+AM2 から y=(x-3)2+311] [4] 4<x<6 のとき 点Pは辺 CA 上にあり, PC=x-4, AP2=(AC-PC) から y=(x-6)² [1]~[4] から 0≦x≦2 のとき y=x2 2<x≦4 のとき y=(x-3)2 +3 YA 4 3 4<x≦6 のとき y=(x-6)2 グラフは右の図の実線部分である。 234 6 x ◆結局 2<x≦4 のとき PM=|x-3| 頂点(3,3), 軸 x=3 の放物線 {2-(x-4)}2=(6-x) 2 =(x-6)2 頂点 (6,0),軸x=6 の放物線 x=0, y=0 は y=x2 に, x=6, y=0 は y=(x-6)2 に含められる。 ④ 88-237 PRACTICE・・・ 55 1辺の長さが1の正方形ABCD がある。 点Pが頂点Aを出発し, 毎秒1の速さでA→B→C→D→Aの順に辺上を1周するとき, 線分APを1辺とす る正方形の面積yを,出発後の時間x (秒) の関数で表し,そのグラフをかけ。 ただし、点Pが点Aにあるときは y=0 とする。 []

未解決 回答数: 1
数学 高校生

⑵なんですが、問題の意味も、解説の意味も全然わかりません、教えてほしいです🙇‍♀️

重要 例題 71 定義域によって式が異なる関数 次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 関数f(x) (0≦x≦4) を右のように定義すると (0≦x<2) f(x)= (x)=x 8-2x (2≦x≦4) 123 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2) f(f(x)) f(x)のxf(x) を代入した式で, 0≦f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0 f(x) <2となるxの範囲と, 2≦f(x)≦4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 3章 2 ⑧関数とグラフ (2f(x) (0≤f(x)<2) 解答 (2) f(f(x))= 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 向 f(f(x))=8-2f(x)=8-2.2x =8-4x 1≦x<2のとき 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4 のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) YA YA 4 2 1 変域ごとにグラフをかく。 (1) のグラフから、f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 その解答のような合計4通 りの場合分けが必要に なってくる。 0 「 「 1 J 1 2 3 4 X 0 1 2 3 4 X (2)のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 成関数といい、 (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 YA 8から2倍を 引く 4 2 0 4 x 2倍する

回答募集中 回答数: 0
数学 高校生

(2)解説見てもいまいちわからないのですがどなたか教えて欲しいです 重要例題の方です!

重要 例題 71 定義域によって式が異なる関数 00000 関数f(x) (0≦x≦4) を右のように定義すると 2x (0≦x<2) き、次の関数のグラフをかけ f(x)= (1) y=f(x) (2) y=f(f(x)) |8-2x (2≦x≦4) けに利用す 分け ・分け。 √2 -101 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxに f(x) を代入した式で f(x) <2のとき 2f(x), 2≦f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0≦f(x) <2となるxの範囲と, 2≦f(x) 4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 答 (2)f(f(x)) = {g2(x)=f(x)≦4) (0≦f(x)<2) よって, (1) のグラフから 123 3章 ⑧ 関数とグラフとの 変域ごとにグラフをかく。 (1) のグラフから, f(x) D 0≦x<1のとき f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 平 f(x)の 1≦x<2なら f(x) =2x 2≦x≦3なら f(x)=8-2x のように,2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 0≦x<1のとき 1≦x<2のとき f(f(x))=2f(x)=2.2x4x f(f(x))=8-2f(x)=8-2・2x =8-4x 1 (p+d g+o 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=28-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) ya YA 4 A x R 1234 x 参考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 8から2倍を 引く 4--- 0 4 x 2倍する 練習 関数 f(x) (0≦x<1) を右のように定義するとき, 71 次の関数のグラフをかけ。 2x (0≦x</ f(x)= (1) y=f(x) (2)y=f(f(x)) 2x-1 1 (1/2x-1)

回答募集中 回答数: 0
数学 高校生

このプリントが学校の数1の予習で出ているのですが、(1)以外全く分からないため手の付けられない状態です。問題にバツが着いている所以外とプリントの真ん中に書いてある問題の解説をお願いします。

数学Ⅰ 第3章 2次関数 第1節 2次関数とグラフ 事前課題プリント3(教科書p.86 ~p.87) ※事前に教科書の該当ページをよく読み、自分なりの答えを考えて授業に挑みましょう。また、分からない場合は何が分からない 授業の最初にグループ内で、以上の2点を発表し説明できるように準備をして授業に参加してください。 (1) y=2x2 のグラフをx軸方向に1, y 軸方向に2だけ平行 移動した式を求めましょう。 (1)g=21x-132 (2) 関数 y=f(x) の座標を何点か考えると (0,f(0)), (1,f(1)),(2,f(2)),(3,f(3)), (4,f(4)) となる これらを,例えばx軸方向に 1, y 軸方向に2平行移動させると (1,f(0)+2), (2,(1)+2),(3,(2)+2),(4,f(3)+2), (5,(4)+2) となる これより,y=f(x) をx軸方向に1, y 軸方向に2平行移 動したグラフはv=f(x-△) と表すことができる。 ○と △に入る数字を求め、理由を説明しましょう。 y=21-1)22 (2)y=f(x)を {} 7174 y→ +P 9 と平行移動するとy-9=f(x-p)になる この公式を用いたやり方と、頂点に注目する やり方の2通りで平行移動後の玉の求め方 説明しょう。 (3)① y=x^2+4x1をそ 77+1 (2) を参考に,一般的な関数 y=f(x) をx軸方向に 軸方向に平行移動した式がどのような式になるか説明しま しょう。 y→+2 77-2 (4) y=x2-4x+5 を次のように移動した式がどのような式 になるのか求めましょう。 14 ① 頂点の座標を求め、 グラフの向き (aの値)に注意しましょう。 ② ★x軸に関して対称移動 ③ y軸に関して対称移動 ③原点に関して対称移動 (5) (5) y=f(x)に関して、次の各式は①x軸に関して対称移動 ②y軸に関して対移動 ③ 原点に関して対称移動した後の 式を表す。 どの式が ①~③のどれに当てはまるのか説明しま しょう。 -y=f(x) y= f(-x) -y=f(-x) (6)(5)を用いて,(4)の問題に答えましょう。

回答募集中 回答数: 0
1/21