学年

質問の種類

数学 高校生

113. 「自然数k,l」を「互いに素である自然数k,l」 としたのですが別に良いですか? また、最後「矛盾している」と書いていますが 同じことを2回書いているように思うのですが、 2回目の「矛盾している」には何の意味があるのですか?

基本例題113 互いに素に関する証明問題 (2) 00000 自然数a,bに対して, aとbが互いに素ならば, a + b と abは互いに素であるこ とを証明せよ。 091 5: 指針a+b と ab の最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで,背理法(間接証明法)を利用する。→a+b と ab が互いに素でない,すなわち a+b と ab はある素数を公約数にもつ,と仮定して矛盾を導く。 なお、次の素数の性質も利用する。 ただし,m,nは整数である。 mnが素数」の倍数であるとき, mまたはnはかの倍数である。 CHART 互いに素であることの証明 解答 a+b と ab が互いに素でない,すなわち a + b と ab はある素 数』を公約数にもつと仮定すると a+b=pk ①, ab=pl ...... p.4762 重要 114 ①1 最大公約数が1を導く 2 背理法 (間接証明法) の利用 ② , lは自然数) to と表される。 ② から, a または6の倍数である。 aがpの倍数であるとき, a=pmとなる自然数mがある。 このとき、①から6=pk-a=pk-pm=p(k-m) となり, bもpの倍数である。 これはαとが互いに素であることに矛盾している。 bがpの倍数であるときも、同様にしてαはかの倍数であり, aとbが互いに素であることに矛盾する。 したがって, a +6 と ab は互いに素である。 [番号] 前ページの基本例題 112 (2) の結果 「連続する2つの自然数は互いに素である」は、整数 この問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 各自=2や 3 などの場合で,このことを検証してみるとよい。 n₁ mとnが互いに素でない ⇔mとnが素数を公約 数にもつ k-mは整数。 TRAF a=pk-b 問題 素数は無限個あることを証明せよ。 [証明] n を2以上の自然数とする。 と+1は互いに素であるから, n2 =n(n+1) は異な る素因数を2個以上もつ。 同様にして。 ns=n(n+1)=n(n+1)(n2+1) は異なる素因数を3個以上もつ。 この操作は無限に続けることができるから、素数は無限個存在する。 =p(k-m') ( m' は整数) 素数が無限個あることの証明は,ユークリッドが発見した背理法を利用する方法が有名である け 21世紀に入って (2006年), サイダックによって提示された, とても簡潔な方 a)(w) P 481 4章 17 約数と倍数、最大公約数と最小公倍数

未解決 回答数: 1
数学 高校生

119. cが3の倍数でないときcの2乗を3で割ったときは2ではないのですか?(a^2+b^2の余りが2でa^2+b^2=c^2なので余りが2だと思いました。)

-9 い。 つ 考え お 。 重要 例題 119 等式 a²+b²=c^に関する証明問題 a,b,cは整数とし,+b2=c^2 とする。a,bのうち、少なくとも1つは3の倍 数であることを証明せよ。 基本 117 指針>「少なくとも1つ」の証明では、間接証明法 (対偶を利用した証明, 背理法) が有効であ る。ここでは,背理法を利用した証明を考えてみよう。 「α, bのうち、少なくとも1つは3の倍数である」の否定は, 「α6はともに3の倍数でない」 であるから, a =3m+1,3m+2;6=3n+1,3n+2 (m,nは整数)と表される。 よって, a,bがともに3の倍数でないと仮定して, d'+b2=c^2 に矛盾することを導く。 CAHOTSAL 08 CHART の倍数に関する証明なら, で割った余りで分類 解答 a,bはともに3の倍数でないと仮定する。 このとき,a2, 62は (3k+1)=3 (3k²+2k)+1, (3k+2)^=3(3k²+4k+1) +1 のどちらかの式のkに適当な整数を代入すると, それぞれ表さ れる。 3k2+2k, 3k²+4k+1は整数であるから、3の倍数でない数α, bの2乗を3で割った余りはともに1である。 [+5] したがって, a2+b2を3で割った余りは2である。…… ① 一方,cが3の倍数のとき, c2は3で割り切れ, cが3の倍数でないとき, cを3で割った余りは1である。 すなわち,c2を3で割った余りは0か1である。 2 ① ② は a²+6°= c2 であることに矛盾する。 -- ゆえに,a^2+b2=cならば、a,b のうち、少なくとも1つは 3の倍数である。 (平方数とは、自然数の2乗になっている数のこと。) DCは奇数である 【検討】 ピタゴラス数とその性質 a2+b2=c2 ゴラス数 (a,b,c) について,次のことが成り立つ。 a, ものうち、少なくとも1つは3の倍数である。 (2) a,bのうち、少なくとも1つは4の倍数である。 a,b,cのうち, 少なくとも1つは5の倍数である。 3 参考 <a =3m+1,b=3n+2 など の場合をまとめて計算。 [①の理由] ( 3K+1)+(3L+1) =3(K+L)+2 AASURA NOTAR 注意 「平方数を3で割った余りは0か1である」 (上の②) も, 覚えておくと便利である。 **a, (K,Lは整数) (から。 (左辺)÷3の余りは2 (右辺) ÷3の余りは0, 1と なっている。 A を満たす自然数の組 (a, b, c) を ピタゴラス数 という。 A を満たすピタ FC <重要例題 119 p.491 EXERCISES 86 p.496 練習 123 (2) ①② から abは12の倍数であり, 1~③から, abc は 60 の倍数である。 b,c, d が等式α'+b'+c2=d2 を満たすとき, dが3の倍数でないな の中に3の倍数がちょうど2つあることを示せ。 [一橋大] Op.491 EX86 489 4章 18 整数の割り算と商および余り あ あ 九

未解決 回答数: 0
数学 高校生

113. mとnが互いに素でないことを言い換えると mとnが素数を公約数にもつ となるのはなぜですか? 例えばm=20,n=4のときm,nは互いに素でなく、 公約数は4で素数ではないですよね?

基本例題 113 互いに素に関する証明問題 (2) 00000 自然数 α, bに対して, aとbが互いに素ならば, a+babは互いに素であるこ とを証明せよ。 p.476 基本事項 [②] 重要 114 指針a+b と ab の最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない,すなわち a+b と ab はある素数』を公約数にもつ,と仮定して矛盾を導く。 なお,次の素数の性質も利用する。 ただし, m, nは整数である。 mnが素数」の倍数であるとき, mまたはn はかの倍数である。 CHART 互いに素であることの証明 ① 最大公約数が1を導く ② 背理法 (間接証明法) の利用 解答 a+b と ab が互いに素でない, すなわちa+b ab ある素 数』を公約数にもつと仮定すると ② (k, lは自然数) a+b=pk...・・・ ①, ab=pl と表される。 ② から, a または6の倍数である。 aがpの倍数であるとき, a=pm となる自然数mがある。 このとき, ①から6=pk-a=pk-pm=p(k-m) となり, ももかの倍数である。 これはaとbが互いに素であることに矛盾している。 bがpの倍数であるときも、同様にしてαはpの倍数であり, aとbが互いに素であることに矛盾する。 したがって,a+b と αb は互いに素である。 mとnが互いに素でない ⇒ m nが素数を公約 数にもつ <k-mは整数。 <a=pk-b =p(k-m') ( m'は整数) [参考] 前ページの基本例題112 (2) の結果 「連続する2つの自然数は互いに素である」 は, 整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個あることを証明せよ。 [証明] を2以上の自然数とすると+1は互いに素であるから,(n+1) は異な 」 る素因数を2個以上もつ。 同様にして, n=n(n+1)=n(n+1) (n2+1) は異なる素因数を3個以上もつ。 この操作は無限に続けることができるから, 素数は無限個存在する。 ※各自=2や=3などの場合で,このことを検証してみるとよい。 素数が無限個あることの証明は, ユークリッドが発見した背理法を利用する方法が有名である が、上の証明は、21世紀に入って (2006年), サイダックによって提示された, とても簡潔な方 法で 481 4章 17 約数と倍数、最大公約数と最小公倍数

未解決 回答数: 0
数学 高校生

青色のマーカー部分について教えて頂きたいです

X Clear 串 分割21 (令和….. 480 なぜこれらは 表記を変えているのでか? × 分割19 (第3... 解答 B CHART (1) Clear 00000 基本例題 112 互いに素に関する証明問題 (1) (4) nは自然数とする。 n+3は6の倍数であり, n+1は8の倍数であるとき、 n+9は24の倍数であることを証明せよ。 任意の自然数nに対して、連続する2つの自然数nとn+1は互いに素であ の方の解 ることを証明せよ。 (21はおさてんどん P.476 基本事項 (2) 基本111114 指針 (1)次のことを利用して証明する。a,b,kは整数とするとき く 生物 白紙法 a,bは互いに素で, akがもの倍数であるならば、はの倍数である。 n=ga,n+1=gb(a,bは互いに素 (2)nn+1は互いに とn+1の最大公約数は nとn+1の最大公約数をとすると この2つの式から消去して 9-1を導き出す。 ポイントは A.Bが自然数のとき, AB 1 ならば A=B=1 3-664 (k, は自然数)と表される。 n+9= (n+3)+6=6k+6=6(k+1) n+9 (n+1)+8=81+8=8(7+1) XO よって 6(k+1)=8(Z+1) すなわち 3 (k+1)=4(+1) 3と4は互いに素であるから,k+1は4の倍数である。 したがって, k+1=4m (m は自然数) と表される。 ゆえに n+9=6(k+1)=6.4m24m したがって n+9は24の倍数である。 (2)+1 最大公約数を」とすると ngan+1=gb (a,bは互いに素である自然数) と表される。 nga を n+1=gb に代入すると ga+1=gb すなわち (b-g) =1 9, a,bは自然数で,n<n+1 より b-a>0であるから g=1 よって, nとn+1の最大公約数は1であるから nとn+1 は互いに素である。 注意 (2)の内容に関連した内容を、 次ページの世で扱っている。 α b は 1 ak = bl ならば kの倍数の倍数 互いに素 [2] αとの最大公約数は1 としてもよい。 <n=ga, n+1=gb 積が1となる自然数はまだ けである。 99 (1) nは自然数とする。 n+5は7の倍数でありn+7は5の倍数であるとき、 112 +1235で割った余りを求めよ。 (2) nを自然数とするとき, 2n-1と2n+1は互いに素であることを示せ。 [ 中央大 (2) 広島修道大) p.484 EN7 X 大森徹遺伝問題・・・ Ć D Đ tlas CHART 互いに素であることの証明 X 基本例題13 互いに素に関する証明問題 (2) 00000 自然数a,bに対して, aとbが互いに素ならば、 α+b と ab は互いに素であるこ とを証明せよ。 P.476 基本事項 2 114 a+b abの最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで、背理法 (間接証明法)を利用する。 at babが互いに素でない、すなわち a+b と abはある素数』を公約数にもつ、と仮定して矛盾を導く。······· なお、次の素数の性質も利用する。ただし、 は整数である。 mnが素数の倍数であるとき、またはnはの倍数である。 45 5 最大公約数が1を導く [2] 背理法 (間接証明法) の利用 このとき、1+1は3の これはともが互いに素であることに矛盾している。 である。したがって bがpの倍数であるときも、同様にしては』の倍数であり、 4+1-3m² と表されるから、 aとbが互いに素であることに矛盾する。 +9-8-3m-24m したがって, a+babは互いに素である。 a+b と ab が互いに素でない、すなわちa+b と abはある素 を公約数にもつと仮定すると a+b=pk....... ①, ab=pl....... ② (k,は自然数) と表される。 ②から、またはもは♪の倍数である。 がpの倍数であるとき,a=pm となる自然数mがある。. このとき、①からbpk-a-pk-pm=pm となり もの倍数である。 第6講 4mとが互いに素でない とが数を公約 にもつ は © 113 (1) aとbが互いに素ならば、 da-pk-b -p(k-m') (mmは整数) 481 同様にして, nna(n+1)=n(n+1) (n+1) は異なる素因数を3個以上もつ、 この操作は無限に続けることができるから、素数は無限個存在する。 ※各自=2や3などの場合で、このことを検証してみるとよい。 4章 αbは自然数とする。 このとき、次のことを証明せよ。 とは互いに素である。 / (2) a+b と ab が互いに素ならば、ともは互いに素である。 17 前ページの基本例題112 (2) の結果 「連続する2つの自然数は互いに素である」は、整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 1 素数は無限個あることを証明せよ。 明n を2以上の自然数とする。 とn+1は互いに素であるから, n(n+1) は異な る素因数を2個以上もつ。 最大公約数と小数 素数が無限個あることの証明は、ユークリッドが発見した背理法を利用する方法が有名である が、上の証明は、21世紀に入って (2006年)。 サイダックによって提示された。 とても簡潔な方 法である。 ×

未解決 回答数: 1
数学 高校生

なぜここでは2通りで場合分けするのですか?

|整数nの平方が3の倍数ならば, nは3の倍数であることを証明せよ。 対偶を考えるとき, 「nが3の倍数でない」 ということを,どのような式で表すかがポイ。 基本 例題56 対偶を利用した証明 (1) 整数nの平方が3の倍数ならば, n は3の倍数であることを証明せト OO00 で面倒である。そこで, 対偶を利用した(間接)証明 を考える。 対偶を考えるとき,「nが3の倍数でない」ということを, どのような式で表すかがさ。 トとなるが,これは次のように表す(検討参照)。 n=3k+1[3 で割った余りが1], なお,命題を証明するのに, 仮定から出発して順に正しい推論を進め,結論を導く証。 を直接証明法 という。 これに対して, 背理法や対偶を利用する証明のように,仮定か 間接的に結論を導く証明法を間接証明法 という。 n=3k+2 [3 で割った余りが2] 解答 与えられた命題の対偶は ロ 「nが3の倍数でないならば, n°は3の倍数でない」 である。 nが3の倍数でないとき, kを整数として, ○直接がだめなら間接で 対偶の利用 (p.99 の検討も参照。) る のトお合S n=3k+1 または n=3k+2 るさケ焼 ( と表される。 [1] n=3k+1のとき n°=(3k+1)=9k°+6k+1 =3(3k°+2k)+1 3k+2kは整数であるから, n' は3の倍数ではない。 O ケ 43×(整数)+1の形の数に 3で割った余りが1の数 | 3の倍数ではない。 [2] n=3k+2のとき n°=(3k+2)=9k°+12k+4 =3(3k°+4k+1)+1 3k2+4k+1 は整数であるから, n'は3の倍数ではない。 [1], [2] により, 対偶が真である。 したがって,与えられた命題も真である。 Kpl 検討)整数の表し方

未解決 回答数: 1
英語 高校生

解答では背理法を使っているのですが、この証明方法でも大丈夫でしょうか?

117 次の等式を満たす有理数 p, qの値を求めよ。 第2章 集合と命題 29* 113 実数 x が正の無理数であるとき, /x は無理数であることを証明せよ。 STEPくB 例題 13 nは整数とする。次の命題を証明せよ。 n°が3の倍数ならば, nは3の倍数である。 対偶を証明する。3の倍数でない整数nは, 3k+1, 3k+2(kは整数)のいずれかの 形で表される。 対偶「nが3の倍数でないならば, n° は3の倍数でない」 を証明する。 nが3の倍数でないとき, nはある整数えを用いて 3k+1, 3k+2のいずれかで表さ 指針 解答 れる。 こ de [1] n=3k+1のとき n=(3k+1)°=27k°+27k°+9k+1=3(9°+9k°+3k)+1 9°+9k°+3kは整数であるから,n°は3の倍数でない。 12」 n=3k+2 のとき ケ効半ふ 変 n°=(3k+2)°=27k°+54k°+36k+8=3(9k°+18k?+12k+2)+2 9°+18k°+12k+2は整数であるから, n° は3の倍数でない。 よって,対偶は真である。したがって,もとの命題は真である。終 114 m, n は整数とする。次の命題を証明せよ。 (1) n?が5の倍数ならば, nは5の倍数である。 *(2) mn が3の倍数ならば, m, nの少なくとも一方は3の倍数である。 115 V6 が無理数であることを用いて,V3-V2 は無理数であることを証明せ 太関 よ。 T16 p, gが有理数,Xが無理数で, か+qX=0 であるならば, カ=q=0 であるこ とを証明せよ。 =1 1)0ta?=2+V2 2-1

未解決 回答数: 1
数学 高校生

赤の点線の部分に書いてあるように何故矛盾してるといえるのですか?

CHART 互いに素であることの証明 a+bと ab が互いに素でない,すなわちa+bと abはある素 自然数 a, bに対して、 a とbが互いに素ならば, a+bと abは互いに素であるこ そこで,背理法 (間接証明法)を利用する。 →atbと abが互いに素でない, すなわち 基本 例題I13 互いに素に関する証明問題(2) 481 とを証明せよ。 p.476 基本事項 2] とab の最大公約数が1となることを直接示すのは糸口を見つけにくい。 重要114 4 11 が素数pの倍数であるとき, mまたは n はpの倍数である。 1 最大公約数が1を導く 2 背理理法 (間接証明法)の利用 いはaの様 解答 数りを公約数にもつと仮定すると atb=pk … と表される。 のから, aまたはbはかの倍数である。 合 がわの倍数であるとき, a=pm となる自然数 mがある。 このとき,①からb=pk-a=pk- pm=p(k-m) となり、 nとnが互いに素でない 0, ab=pl … 2(k,1は自然数) →mとnが素数を公約 数にもつ R-m は整数。 bもかの倍数である。 nこれはaとbが互いに素であることに矛盾している。 1は30倍 北がって、 Aa= pk-b =が(R-m') そ 自の(m'は整数) bがかの倍数であるときも,同様にしてaはかの倍数であり, 表きれるから aともが互いに素であることに矛盾する。 リ=2m したがって, a+bと abは互いに素である。 mt1は互い す の時数であ

回答募集中 回答数: 0