学年

質問の種類

物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

必 76. 〈円形波の反射〉 5.0Hzの円形波が次々と送り出され, 水面上を伝わっていく。図で円は 水面波の山の位置を表している。 0を通り器壁に平行な直線上で0から 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが, 反射 の際、波の振幅および位相は変わらないとする。 また, 水槽内の水面は 図のように、水槽の器壁から3.0m離れた点を波源として, 振動数 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな 8.0m P 3.0m く,水面を伝わる波の速さは一定であるとする。さらに,波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 22 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 1/12 となる。□に当てはまる式を入れよ。 いまx=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4)入は何か。

回答募集中 回答数: 0
物理 高校生

至急!この問題の(1)から(4)の解説をお願いします🙇‍♀️

必 76. 〈円形波の反射〉 図のように、水槽の器壁から3.0m離れた点を波源として,振動数 5.0Hz の円形波が次々と送り出され, 水面上を伝わっていく。 図で円は 水面波の山の位置を表している。0を通り器壁に平行な直線上でOから 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが,反射 の際, 波の振幅および位相は変わらないとする。 また, 水槽内の水面は 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな P 3.0ml 8.0m Q く、水面を伝わる波の速さは一定であるとする。さらに、波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) P (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 42 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 12/12 となる。 □に当てはまる式を入れよ。 いま x=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4) 入は何か。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(1)〜(4)の解き方って合っていますでしょうか。また、(5)の問題が分からなかったので教えていただきたいです🙇左が問題、右が解いたものです。

問4 軽いバネの片端を壁に固定し、 他端に質量mの物体をつけて粗い床面に置いた、水平パネ振り子を考 える。 バネが自然長の時の物体の位置を=0とし、 バネが伸びる向きに軸正をとる。 物体は床面から速度 と逆向きの抵抗力-bu を受ける (6は比例定数)。時刻 t = 0 に、 原点にある物体に正の初速度 vo を与える と、バネ定数にがん=だったため、このパネ振り子は臨界減衰振動をした。 この時、任意の時刻 t におけ る物体の位置(t) は右下のグラフのようになり、y=を用いて以下の式で表せる。 (t)=votent 以下の間に、mo, のうち、 必要な記号を用いて答えよ。 (自然対数の底eは数字なので、当然使用可。) (1) 最初に物体の速さが0となる時刻 to を求めよ。 (2) 時刻 to の物体の位置 z (to) を求めよ。 (3) 時刻 to までにバネが物体にする仕事 W を求めよ。 (4) 時刻 to までに床からの抵抗力が物体にする仕事 Wa を、 (3) の結果を用いて求めよ。 (5) 【チャレンジ問題】 前問で求めたW を、 以下の積分を実行することで導け。 rx(to) = to) (-kv)dz = Wa= ・to sto (-kv)dr = √ (-bv) vdt = √ (-bv²) dt 位置 時刻

回答募集中 回答数: 0
1/12