学年

質問の種類

日本史 高校生

わからないため教えてください

歴史 3 ■室町時代 次の問いに当てはまる語句を答えなさい。 なまくら ①鎌倉幕府の滅亡後、 後醍醐天皇が行った政治を何というか。 ②領内の地頭や新興の武士を家来にした守護を何というか。 にちみん ③日明貿易で用いられた証明書を何とよぶか。 むろまち ⑨足利尊氏が開いた室町幕府で、 将軍の補佐役を何というか。 あしかがたかうじ ①けんんのしんせい ②守護 3 次の問 江戸時代の せきがはら ②関ヶ原の戦 江戸幕府が ほうりつ 法律を何と ④第3代将 復する制 江戸時代 ⑥徳川家康 か。 ⑦ 1637 年 起こし さこく 鎖国の この国 ⑨幕府の 織を ⑩18 世 て幕 次の図は、室町時代に奈良市の郊外にある岩に刻まれた宣言である。これを見て あとの問いに答えなさい。 ⑥将軍のあとつぎ問題をめぐって細川氏と山名氏が対立し, 1467年に起こった 戦乱を何というか。 ⑤団結を強めた農民が、金融業を営む商人などをおそって, 借金の帳消しなどを 求めるようになった動きを何というか。 4 5 ⑦図の宣言が刻まれたころの世の中の様子として, 適切 でないものを次のア~ウから一つ選んで, 記号で答え なさい。 ア 同業者集団である座が結成され, 営業を独占する権 利を認められた。 いち そうせん みんせん イ 定期市が各地に生まれ, 宋銭や明銭が使用された。 正長元年ヨリ カラス カウニヰメアル サキ、カンペ四カン 8 9 ごせいばいしきもく ウ 武士の決まりとして, 御成敗式目が定められた。 10 ①貧し ぼうせん ⑧図の傍線部の「ヲキメ」とは何か, 答えなさい。 ■安土桃山時代 次の問いに当てはまる語句を答えなさい。 れか ⑩オラ 13185 1418 ⑨室町幕府をほろぼした人物はだれか。 (12) いち ⑩ 城下の商工業を発展させるために, ⑨の人物が行った, 市の税を免除した政策 めんじょ 10 次の を何というか。 (13) とよとみひでよし (1) きばん ① 豊臣秀吉が経済的基盤を安定させるために, 全国の田畑の面積や土地のよしあ しを調べるなどした事業を, 漢字4字で何というか。 は (14) (2)= ⑩豊臣秀吉が,農民や寺社から武器を取り上げた政策を何というか。 さかい 13 豊臣秀吉に仕えた堺の商人で, わび茶を完成させた人物はだれか。 とくがわいえやす いしだみつなり ⑩ 1600年, 徳川家康が石田三成らを破った戦いを何というか。 | 近世社会の仕組みの成立 1511 や 12の政策などが行われた結果, 社会がどのように変化したか、簡単に説明 記述 しなさい。 14

未解決 回答数: 1
数学 高校生

この問題の3番目の問題についてなんですが,この場合全ての整数が,0,1のどちらかになっていないと成立しないと思ってて,例えば、a1が3で他の解が0の時が想定されてないと思いました。 私の考え方の間違っている部分を教えてください

386 okakaka<a<a<9 次の条件を満たす整数の組 (a1,a2, 3, 4, 重要 例題 34 数字の順列 (数の大小関係が条件) (2) 0≤a≤a2a3 a4 a5≤3 α5) の個数を求めよ。 0000 基本32 88 3個の数字から異な 異なる 4個の数字から重複を 解答 (1) Kaz (3) aitaztastastas≦3, a≧0 (i=1,2,3,4,5) 指針 (1) α1, 2,..., as はすべて異なるから, 1, 2, ・・・・・, 個を選び,小さい順に,a1,a2, ..., as を対応させればよい。 求める個数は組合せ Cs に一致する。 (2)(1) とは違って、条件の式にを含むから, 0, 1, 2, 34 して5個を選び,小さい順に aaaa5を対応させればよい。 求める個数は重複組合せ&Hs に一致する。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 ataztastastas+6=3 3-(a+a2+as+a+αs) =bとおくと また, a+az+αs+a+αs≦3から b≥0 よって、 基本例題 33(1) と同様にして求められる。 (1) 1, 2,......, 8の8個の数字から異なる5個を選び, 小 さい順に a1,a2, ....., 45 とすると, 条件を満たす組が 1つ決まる。 よって, 求める組の個数は 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に α1, 2, ......, as とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4Hs=4+5-1Cs=8C5=56(個) (3) 3-(a1+a2+as+a+αs)=bとおくと a1+a2+as+a+as+b=3, ai≧0 (i=1,2,3,4,5),60 ...... ① よって, 求める組の個数は, ① を満たす0以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k=0, 1, 2, 3) を満たす 0 以上の整数の組 (a1, A2, 3, 4, 5) の数は5Hであ るから 5Ho+5H1+5H2+5H3 =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 検討 一等式 (2),(3)は次のように 解くこともできる。 (2) [p.384 PLU ONE の方法 bi=aiti(i=1,2 4, 5) とすると, 0<bı <b<by<br< と同値になる。』 (1)の結果から (3)3個の○と 切りを並べ、例 ||0|100|| 合は(0,1,0, を表すと考える このとき A|B|C|D とすると,A, D, E の部分に の数をそれぞ a3, 4, as と 組が1つ決ま 8C3=56( 5桁の整数nにおいて, 万の位, 千の位, 百の位、十の位、一の位の数字を a, b, c, d, e とするとき, 次の条件を満たすnは何個あるか。 (1) a>b>c>d>e _3) a+b+c+d+e≦6 (2) a≧bcd≧e

未解決 回答数: 1
1/35