学年

質問の種類

数学 高校生

増減表の左にあるここで、M=αが〜 となっていて、式の次数を下げて代入を簡単にしていると思うんですけど、これってどうやったら思いつきますかね?いっぱい解くしかないですかね、

7 最大 最小 (近畿大薬 座標平面において, 4点A(-1, 1), B(-1, 0)C(1,0), D(2,2)と直線y=ma ぞれa,b,c,dとし, I'd とする. Im で表し,Iの最大値と最 一般には極値で最大・最小になるとは限らない 次の人はささいなことだが, 意外にも効 確かに極値で最大・最小となることを答案にはっきり書くようにしよう. 分数関数の極値を求めるとっておきの方法 f(x)=g(x) lim f( 本間の場合, m は実数全体を動くの 最小値があるとすればそれは極大値・極小値しか考えられないが, limf (m), m118 m [証明] ( {h(x)}2 .. h(x) f'(x)='(x) h(x)-g(x)h'(x) g(a) g'(a) h(a) h'(a) f(a)=g(a)_g' (α) h(a) h'(a) がx=αで極値をとりん (α)≠0ならば,f(α)=g′(a) である. h' (a) がx=αで0になるから,g' (α) h (α) 解答 |-m-1| a= b= 1-ml √m²+1 √m²+1 C= |m| √m²+1 |2m-2| d= であるから, 4点A √m²+1 距離 直線の 7m²-6m+5 I=2+2+c+d2= m²+1 f'(m)=- (=f(m) とおく) (14m-6)(m²+1)-(7m²-6m+5)2m (m2+1)2 6m²+4m-62(3m²+2m-3) ・① 6 M M² (m2+1)2 (m2+1)2 -1±10 3m²+2m-3=0の2解は であり,α, B(a<β) とおく. 3 f (m) は右のように増減し, limf(m)=7 m-too なので, m=αで最大, m=βで最小になる. ここで, m=αが①の分子を0にするから, (14a-6) (a2+1)=(7a2-6a+5)-2a 7a2-6a+5 14a-6 a²+1 2a : f(α)=- = m *** a .. B *** f'(m) + 0 f(m) 17 0 + + 9 3 =7--=7+ =7+(√10-1) α √10 +1 同様にf (B) を求め, 最大値はf(α)=6+√10. 最小値はf(B)=6-10 07 演習題(解答は p.58)

回答募集中 回答数: 0
数学 高校生

入試問題なのですが、最後の部分の求め方を教えて欲しいです。 答えは20/3です。 よろしくお願いします

xy 平面において, a を定数とし, 放物線y = - x 2 + 4ax + 4a + 6 を C とする。 問1.Cの頂点の座標は (ア) a, (イ) a+ (ウ) a + (エ) である。 α がすべて の実数値をとりながら変化するとき,頂点の軌跡は,放物線y = x2+ (オ) x+ (カ) である。 問2. t を定数とする。 点 (t - t2 + 4at + 4a +6) におけるCの接線の方程式は y= (キ) t+ (ク) a x + t + (ケ) a + (コ) である。この接線が点P (0, 10) を通るとき, (サ (シ) a である。①を満たす異なる実数tの値が2つ存在するようなαの値の範囲はa < (ス) である。 a< (ス) のとき,点PからCへ2本の接線を引くことができる。 それらの2つの接 点のうちx座標の大きいものをQ とする。 Q の座標を (x, y) とすると, x = (セ) (ソ) -a. y= (夕) a+ (チ) + (ツ) an (テ) - a と表せる。 よって,a < (ス) のとき,xのとり得る値の範囲はx > (ト) である。 ま た② ③からαを消去すると, y=-x (ナ) x r2+ (二) x+ (ヌ) (ネ) となる。 したがって,a が a< (ス) の範囲を動くとき, 点 Qの軌跡は,④のグラフに おける x > (ト) の部分である。 (ノ) 点 Q の y 座標が最も大きくなるときのQのx座標は であり,このとき, (ハ (a) a= である。また,a が O≦a< (ス) の範囲を動くとき, 線分 PQ の動く範囲 (7) の面積は ( (2) (ホ) である。

回答募集中 回答数: 0
数学 中学生

この問題が合っているか見て欲しいです! 変域の問題の時に0を入れてもいいのか、 6の(2)の式が他の式とは少し違うものになってしまったので、特に不安です、、、 ご回答よろしくお願いします!

どのように変化するのかな? 右の図のような長方形ABCD があり、点Pは A 6cm. Aを出発して、長方形の辺上を, B, Cを通って xom Jam P Dまで動きます。点PがAからx cm 動いた ときの△APDの面積をycm² とすると,△APD の面積はどのように変化するでしょうか。 B 下の1, 2, 3の図は,上の で点Pが辺AB, BC, CD 上を 動くときの△APD を,それぞれ表したものです。 1 日 6 cm xcm E) 3 AD 6cm D 2 -6 cm D とき, 高さは どこに 4 cm P B B B P→ 問4 点Pが辺AB上を動くとき,yをxの式で表しなさい。 また,このときのxの変域を答えなさい。 問5 点Pが辺BC上を動くとき,yを式で表しなさい。 また、このときのxの変域を答えなさい。 点P 移動 IC 問6 点P が辺 CD 上を動くとき,次の問いに答えなさい。 (1) DPの長さをxの式で表しなさい。 (cm2) y 12 10 8 CO 6 4 (2)yxの式で表しなさい。 また, xの変域を答えなさい。 2 X 0 2 4 6 8 10 12 14 (cm) 問7 左の図に,△APDの ま みんなに 説明しよう 面積の変化のようすを 表すグラフをかきなさい。 また,グラフを見て 気づいたことを説明 しなさい。

回答募集中 回答数: 0
数学 高校生

写真見づらくて申し訳ないです。問10だけ解き方がわからないので教えていただきたいです。

18:27 KK 18:27✔ ← R6_15_nurse_mat... @ 回 2 問6~10の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び 解答用紙にマークせよ。 5G Doll 74 A 2次関数f(x)=-2x+2-1.g(x)=-2x+28-1 (a,bは実数) について,xの方程式(x)=0とg(x) = 0 はと もに実数解をもつものとする。 f(x)=0の2つの実数解をα. Bとし, g(x)=0の2つの実数解を するとき、以下の 問に答えよ。 問6 α =βとなるようなαの範囲はどれか。 (1) -2<<-1 (2) -2<a<0 (3) -1<<1 (4) 0<a<2 (5) 上の4つの答えはどれも正しくない。 問7a=Bで,aとBがともに12より大きくなるような範囲はどれか。 (1) -2<<1-17 (2) -1<<1-√7 (5) 上の4つの答えはどれも正しくない。 1-√7 (3) 1-17 <<1+/7 (4) 1+/7 <<1 4 問8 α = B.y=すなわちf(x)=0とg(x)=0がともに解をもち,ayであるようなαの組 (v.b)はどれか。 (1)(1.0) (2) (1.1) (5) 上の4つの答えはどれも正しくない。 (3) (0.1) (4)(1.1) (1) 座標平面上の2つの放物線y=f(x)とy-g(x)の交点が(1, -1)であるとする。 このようなaba <b>について。 との積の値はどれか。 (2)- (5) 上の4つの答えはどれも正しくない。 問10a< 6. <y <B< であるとき, a+bはどの範囲にあるか。 (1)&<a+b (2) B <a+b <お (3) y <a+b <B (4) α <a+by (5) 上の4つの答えはどれも正しくない。 2- 3 問11~15の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び、解答用紙にマークせよ。 平面上に正五角形ABCDE がある。 頂点 A. B, C, D, Eはアルファベット順に反時計回りに配置されているものど はじめに頂点に基石を置く。 そして1個のサイコロを振り、出た目の数だけ碁石を反時計回りに頂点から頂点へ る試行を繰り返す。 ただし、試行によって移動した碁石の位置は、次の試行を行うまで変えないものとする。 例えば、 試行で3の目が出たら、 碁石はA→B→C→Dと進みDに到達する。 また、 最初の試行開始後、 碁石がAに戻って Aを通過したとき、 碁石が1周したものとする。 このとき、1回の試行の結果 石がAまたはBにある確率をα. 1回の試行の結果 蕃石が1周する確率をとする。 Pe を2回繰り返した結果、 碁石が2周する確率を 試行を3回繰り返した結果 碁石がちょうど2周してAにある確率をd とする試行を回した。 03だけが右からしてAにある確定をおとする。このとき はいくら

回答募集中 回答数: 0
物理 高校生

2枚目の解答のオレンジ線を引いているところについて質問です。 問題にはシリンダーとピストンは断熱材で作られている、と書かれているので断熱変化なのかとおもっていたのですが、ばねがついていると断熱変化では無くなるのですか?

1 264 ばね付きピストン■図のように, なめらかに動くピス トンとヒーターを備えた底面積Sのシリンダー内に1molの単原 子分子理想気体を入れる。 ピストンは, ばね定数んのばねで壁に 連結している。大気圧 のとき, シリンダーの底からピストン までの距離が でつりあい, ばねは自然の長さになっている。シ リンダーとピストンは断熱材で作られ,外からの熱の出入りはな いものとする。 気体定数をRとして、 次の問いに答えよ。 (1) このときの気体の温度T を求めよ。 10000000 ヒーター % k mo (2)次に, ヒーターで熱量Qを与えたら気体の温度は上昇し, ばねはxだけ縮んだ。 次の 気体の各量を求めよ。 (ア) 変化後の気体の圧力(イ) 内部エネルギーの増加⊿U (ウ) 気体が外部にした仕事 W' (エ) 加えた熱量 Q (3) ピストンから静かにばねをはずし, 気体をゆっくりと変化させると気体の圧力はpo になった。 圧力と体積の関係をグラフで表せ。 物

回答募集中 回答数: 0
1/1000