学年

質問の種類

数学 高校生

2枚目のセソタチの問題です なぜ3枚目の赤線のような式になるのか分かりません 教えて頂きたいです🙇‍♀️

[実戦] 5 絶対値を含む連立不等式 タイムリミット20分 先生と太郎さんと花子さんは,数学の授業で,以下の連立不等式について考察している。 [x-2a≧-3 ||x+a-2|<6 ① ・② の 3人の会話を読んで (1)~(3)の問いに答えよ。 ただし, αは定数とする。 先生:まずは,不等式 ② に注目してみましょう。 a=0 のとき, 不等式 ② の解を求め てみてください。 太郎: アイ <x<ウとなります。 先生: 正解です。 Q (1) アイ, ウ に当てはまる数を答えよ。 先生:次に,x=1 が不等式① を満たさないようなαの値の範囲を求めてみましょう。 太郎: x=1 が不等式① を満たさないから, 不等式① に x=1 を代入してもその不等 式は成り立たないよね。 つまり,x=1 が不等式①を満たさないための必要十分 条件は 1-2α エ |-3 だね。 花子:もう一つ考え方があるんじゃないかな。 不等式① を xについて解くと, x≧2a-3 となるか ら,これを数直線で表すと右の図のようになるよ。 2a-3 この図から x=1 が不等式① を満たさないとき, オ 2α-3となることからもαの値の範囲が求められるね。 太郎 : 確かにどちらの不等式を解いても, a カキ となるよ。 先生:そうですね。 2通りの考え方ができましたね。 J (2) I オ カ に当てはまるものを、次の①~⑤のうちから一つずつ選 べ。 ただし, 同じものを繰り返し選んでもよい。 ⑩ > ① < ②≧ ④C また, キ に当てはまる数を答えよ。

未解決 回答数: 1
数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1
1/821