学年

質問の種類

数学 高校生

1番です。記述に問題ないですか?

180 00000 基本例題 113 絶対不等式 (1) すべての実数xに対して, 2次不等式x+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax^²-2√3x+a+2≦0 が成り立つような定 数αの値の範囲を求めよ。 p.171 基本事項 ⑥ 「演習129 指針 2次式の定符号 2次式 ax2+bx+cについて D=62-4ac とする。 ·········!」 常に ax2+bx+c>0⇔a> 0, D < 0 常に ax'+bx+c<0⇔a<0, D<0 (1) x²の係数は 1 (正) であるから, D<0が条件。 常に ax2+bx+c≧0⇔a> 0, D≦0 常に ax²+bx+c≦0⇔a<0, D≦0 (2) 単に「不等式」 とあるから, α=0 (2次不等式で ない)の場合とa≠0)の場合に分ける。 [補足 ax²+bx+c>0 に対して, a=0 の場合も含め ると,次のようになる。 解答 (1) x²の係数が1で正であるから 常に不等式が成り立 つための必要十分条件は、 2次方程式 x2+(k+3)x-k=0 の判別式をDとすると D<0 D=(k+3)^-4・1・(-k) =k²+10k+9= (k+9)(k+1) であるから, D<0より (k+9)(+1) < 0 ゆえに -9<k<-1 + 常に ax+bx+c>0⇔a=b=0, c>0; または α > 0, D < 0 + [a>0, D<0] a=0のとき, 2次方程式 ax²-2√3x+α+2=0の判別 式をDとすると,常に不等式が成り立つための必要十 分条件は a<0 かつ D≦0 (*) 2=(-√3)a(a+2)=-a²-2a+3=-(a+3)(a-1) であるから, D≦0 より よって an-3, 1≦a 「すべての実数x」または「任意の実 数x」 に対して不等式が成り立つと は, その不等式の解が, すべての 数であるということ。 (1) の D<0 は, 下に凸の放物線が常 にx軸より上側にある条件と同じ。 (2) a=0のとき, 不等式は-2√3x+2≦0 となり、 例え (*) グラフがx軸に接する, また ばx=0のとき成り立たない。 はx軸より下側にある条件と同じ であるから, D< 0 ではなく D≦0と する。 (a+3)(a-1)≧0 a<0 との共通範囲を求めて すべての実数について、 2次不等式 ax+bx+c>0) が成り立つ ⇔2次関数y=ax²+bx+cのグラフが常にx軸より上側にある a> (下に凸) かつ D=6-4ac < 0 (x軸との共有点がない) nor [a < 0, D<0] a≤-3 Ne + [a> 0, D<0]

回答募集中 回答数: 0
数学 高校生

1枚目の(2)は3パターンで場合分け2枚目の(2)は2パターンで場合分け このような場合分けの違いはどこから分かるのですか?

E 重要 例題110 2次不等式の解法 (4) 次の不等式を解け。 ただし, α は定数とする。 x²+(2-a)x−2a≤0 計 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0の2次方程 ① 因数分解の利用 それには の2通りあるが、 ② 解の公式利用 は左辺を因数分解してみるとうまくいく。 a<βのとき β<x (x-a)(x-B)>0<x<α, (x-α)(x-B)<0⇒a<x<B βがαの式になるときは,α と B の大小関係で場合分けをして上の公式を α, (2)の係数に注意が必要。 a>0,a=0, a<Qで場合分け。」 (2ax² sax CHART (x-α)(x-B) ≧0の解α, β の大小関係に注意このように分けると 113 金の向きかかわる。 530 解答 (1)x+(2-a)x-2a≦0から [1] a<-2のとき, ① の解はa≦x≦-2 [2] α=-2のとき, ① は (x+2)² ≤0 は x=-2 7:00~でするのは2次方程式 [3] -2 <a のとき, ① の解は -2≦x≦a 以上から a<-2のとき a≦x≦2 元=2のとき x=-2 2<αのとき -2≦x≦a (x+2)(x-a) ≤0 ...... 11 [1] (2) ax≦ax から ax(x-1)≦0 [1] a>0 のとき, ① から よっては 0≦x≦1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よっては すべての実数 [3] a<0のとき, ① から x(x-1)≧0 ① x(x-1)≦0 よって解は x≤0, 1≤x 以上から 練習次の不等式を解け 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のときすべての実数; a<0のとき x≦0, 1≦x to til 11 a 0 する x -2 基 [2] V x [3] tel -2 $3@1> [1] ① の両辺を正の数αで割る。 注意 (2) について, ax≦ax の両辺をaxで割って, x≦1としたら誤り。 なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 (3) 26 Ist 0≦0 となる。 は 「くまたは=」 の意味なので、くと= のどちらか 一方が成り立てば正しい。 ① の両辺を負の数 α で割る。 負の数で割るから、不等号の向き が変わる。 3 2次不等式 13

回答募集中 回答数: 0
数学 高校生

2番の回答の、(k+2)(k-6)>0からしたがってk…になるのはどうゆうことですか?2つの点で交わるから0より大きいのは分かるのですが、その後のkの範囲が何を言っているのかよく分からないので、教えてください。急ぎです。。

不等式の解の存在 絶対不等式 大友 >0 が也り立 の0 oe 2 次不等式 有 な定数をの値の得 を求めよ。 ッー gz二を十8 <0 を満たす が ーー 実数 が存在するような二 の 作の条団を求めよ。 sc 《⑩ 5 較陸へてのェについて: 和 u リー 琶国 のグラフが東より王還人せある< いこ ーー = 罰村とヶ執の共有交は 上 = のグラフがx軸より下側にある NG75s $ ョ 部分が存在する。 とヶ軸の共有点は 1 り 中ツー 自0) 7/(9 =ダ+2友一を填4 とおく。 4ッーナ(G) のグラフは下 N こついて >0 が成り立つのは, に凸の放物線であり, 次 すべての実数 y につい 5A62) 人 /() のグラフがァ軸と共有点をもたないときである。 Py ょって /(⑦9 =0 の判別式を の とすると の<0 で光 ゅえに の ーー(-8を+のだす3一4 @ = (を+⑳(を一)く0 したがって 4くく1 間 音1 とあく やこの のグラ78T 9 <0 を満たす 1 さよ に凸の放物線であり, 次 0W 実数 が存在するのは, ッニアプ(*) の | っょぅうになればよい。 し +南と異なる 2 点で交わるときである。 4の) 匠 09 の判別式を の とすると の>0 = (にが?一4(%十3) =ゲー4g一12 1 | |

回答募集中 回答数: 0
1/2