学年

質問の種類

地理 高校生

この問題で赤くまるで囲ったところについてなのですが、ロンドン、イギリスもアフリカの広範囲を植民地としていたのに、アフリカからの航空便の発着が少ないのはなぜですか?教えてください!

第 3 意 難問を攻略 生活文化と人口,村落・都市 共通テスト ここで間違える! みんなのミス傾向 人口や都市の問題では,経済成長を遂げた国も増えてきたため, 先進国の違いや 途上国の違いを捉えていないと解答にたどり着けません。 また, 頻出である地図 や文,指標を与えて解答させる都市の内部構造の問題では,地図情報から都心部・ 都心周辺部・郊外に分けて、各々の持つ機能をおさえていないと解答ミスをする ので気をつけましょう。 要注意! 正答率 CHALLENGE (1) 次の図は, ヨーロッパの主要な都市の空港における, ヨーロッパ以外 40.5% から到着する航空便の旅客数の内訳を、出発地域別に示したものである。 図 中のア~ウはパリ, フランクフルト, マドリードのいずれか, 凡例AとBは アフリカと北アメリカ**のいずれかである。 パリと北アメリカとの正しい組 合せを,次ページの①~⑥のうちから一つ選べ。 パリ 北アメリカ 解答」 考え方のポイント 2 ②アB ① アA ア A ③イム 4イB ④ 6 ウB ⑤ウA 第3 生活文化と人口,村落都市 旧宗主国と旧植民地の関係を確認しよう! ントとなるのは、各都市を有する国がかつてどの地域に植民地を広く持っていたかという 点です。なぜなら、現在でも旧宗主国と旧植民地のつながりは深く、人々の往来も活発だ からです。そのことを前提に図を読み解いていきましょう。 本間は, ヨーロッパ以外から到着する航空便の旅客数の内訳の問題ですが、解答のポイ まずは他の都市とは違って, 中央・南アメリカからの旅客数の割合が半分以上を占 めていることから、かつて中央・南アメリカの大部分を植民地としていたスペインの首都 マドリードと判定できます。 またすでに明かされているロンドンは、凡例Aの比率が最も 高いことがわかります。 よって, 凡例Aは,ロンドンと歴史的にも政治的にもつながりが VT このた ここでアフリカの広範囲を植民地としていたのはフランスでしたから、凡例Bのアフリ カの比率が高いイが,フランスの首都パリと判断でき, よって, 組合せは ③が正解です。 パ ケープすが あるなど金融業が栄えていることから、商用客の往来が活発で、世界的金融都市のニューヨ ークを持つアメリカ合衆国を含む北アメリカの比率が高めとなっていることもわかります。 * 一つの都市に複数の空港が存在する場合は合計値。 **北アメリカにはメキシコを含まない。 (共通テスト 2022年 本試験) 図 ロンドン ア イ ウ 20 100% 40 60 80 A 2 西アジア 東アジア B 統計年次は2018年。 Eurostatにより作成。 目 中央・南アメリカ □ その他 176 差がつく学習法 第3問にあたる『生活文化と人口、村落・都市」では、とくに「人口」と「都市」 の問題で正答率が低い問題が多く、受験生の得点差が開きます。 「人口」の問題では、 まず先進地域と発展途上地域の違いを意識したうえで、先進地域はさらに①西ヨーロ ッパ諸国 ② 北ヨーロッパ諸国 ③ 新大陸の先進国(アメリカ合衆国, カナダ、オー ストラリア), 日本・韓国の違いに分けて判別していきます。また発展途上地域も同 様に①経済成長を遂げたアジア諸国 ②経済発展が遅れるアジア諸国,③資源が豊富 なアフリカ諸国, ④極めて貧しいサブサハラ諸国 ⑤ 国内格差が大きい中南アメリカ 諸国の違いに分けて判別していきます。「都市」の正答率が低い問題は、内部構造に関 する地図を使用した出題が中心なので, ①都心部, ②都心周辺部, ③郊外をまず地図 情報から正確に場所を特定し, それぞれの地域が持つ都市機能を考え, 指標と対応さ せていきましょう。 似て非なるものを見極める! 077

解決済み 回答数: 1
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0
1/78