学年

質問の種類

数学 高校生

249. 答えまでの道筋で0≦x≦1においてg(x)≧0のように 絶対値を考慮してこのような記述をしていますが、 0<x<1ではなく0≦x≦1である理由があまりピンと来ません。 t≦0とおいたときx=0のときg(x)=0となるから という理由以外に0≦x≦1である理由は何か... 続きを読む

の分 5 |。 分割して 重要 例題 249 変数t を含む定積分の最大・最小 00000 f(t)=fx-txdx とする。 f(t) の最小値と最小値を与えるtの値を求めよ。 [ 類 名古屋大 ] 基本 248 12 指針 グラフをかいて, 定積分がどの部分の面 積を表すかを考えてみよう。 g(x)=x2-tx とすると,g(x)=0の解は x=0tであるから, y=lg(x) | のグラフは 右図のようになり, f(t) は図の赤い部分の 面積を表す。 積分区間は 0≦x≦1で固定 されているため、変化する x=tの位置が 0≦x≦1の左外, 内部, 右外のいずれかで場合分けをする。 (日 解答 g(x)=x2-txc とする。 g(x)=0の解はx=0, t [①] [1] t≦0 のとき 0≦x≦1では g(x)≧0 よって f(t)=g(x)dx=f'(x-x)dx 分は、 それぞ った部分の面 [2] 0<t <1のとき 0≤x≤t l g(x) ≤0, よって f(t)=_Sg(x)dx+f,g(x)dx = - [ x ³² - ²/² x ²] + [ ³² - ²/2 x²] = 3 2 F (1) = 1² - 1/2 = (1 + √2²) (1 -√2) のようになる。 したがって, f(t) は t 2 t= をとる。 1 t 2 f'(t)=0 とすると t=± 0<t < 1 における増減表は右のようになる。 0≦x≦1では g(x) ≧0 2 のとき最小値 t≦x≦1では g(x)≧0 √√√2 2 [3] のとき t よって (1) Sip(x)dx=(1/-/-/-/1/3 2 以上から, y=f(t) のグラフは,右の図 33 I 2-√2 6 t 2 y4 2-√2 6 t 2 O 1- (1 3 t≤0 + 6 1-3 10 1x √√21 2 t f' (t) f(t) 0 t [1] 0 y=g(x) | [2] - [3] 0 0 Y_y=lg(x)/ ◄ - ( ² 1/2 + ²)2 + (1 - 2/2 ) 1 t>0 0 √2 2 0 t1 1 x 2-√2 6 x + 7 YA y=g(x) | 17. 1 t 1 7章 41 面 積

未解決 回答数: 1
数学 高校生

241. このような解答でも問題ないですか? また積分で面積を求める系の問題では 模範解答ではほぼ必ず「図よりS=」 と結論へ進んでいるように思うのですが、 記述問題では図を書いた方がいいのでしょうか? またこの問題で図を書くとなると、曲線の極値などを求めて図を書くというこ... 続きを読む

2 基本例題 241 3次曲線と接線の間の面積 曲線y=x²-5x2+2x+6 とその曲線上の点(3, -6) における接線で囲まれた図 形の面積Sを求めよ。 とする。 基本 238,240 重要 247 指針 211 原点 面積を求める方針は ① グラフをかく 2 積分区間の決定 ③3 上下関係に注意 本問では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 また、積分の計算においては,次のことを利用するとよい。 3次曲線 y=f(x)(x2の係数がα) と直線y=g(x) が x=α で接するとき,等式 f(x)-g(x)=a(x-α)*(x-β) が成り立つ。エロー (2 気に 解答 y'=3x²-10x+2であるから,接線の 方程式は Dip y-(-6)=(3・32-10・3+2)(x-3) すなわち y=-x-3Sは この接線と曲線の共有点のx座標は, x3-5x2+2x+6=-x-3の解である。 これから x 3-5x2+3x+9=0 ( * ) ゆえに (x-3)^(x+1)=0 よって x=3, -1 したがって,図から、求める面積は S=S², 10 {(x-5x²+2x+6)-(-x-3)}dx ...... YA 6 -3 ico 6 3 18 x |曲線 y=f(x) 上の点 (α, f(α)) における接線の 方程式は y=f(a)=f'(a)(x-α) 1(x)0-(2017-2 辺が 【左辺が(x-3)を因数にも つことに注意して因数分解。 3 93 S 703230 1 -5 3 -6 -9 1 -2 -3 2013 380586 1904 1 =S_,(x-3)(x+1)dx =S²₂ (x−3)²{(x−3) +¹)dx=S_₁ {(x-3)² + 4(x-3)²) dx (x-a)²(x-B) - -[(x-3)" ], +4 [ {x=32], --64+ 256-04 (x-3)373 3 =(x-2)^{(x-2)-(B-α)} = S(x-a)" dx = (x=a)^² +C | ◄ n+1 36 7章 41 面 積

未解決 回答数: 0
数学 高校生

面積を求める際のこのようなグラフは 極値やX軸との交点など求めてからグラフを書きますか??

338 00000 基本 211 基本例題 215 3次関数のグラフと面積 関数 y=2p-s-2x+1のグラフとx軸で囲まれた部分の面積を求めよ。 CHART & SOLUTION 面積の計算 まずグラフをかく ① 積分区間の決定 3次関数のグラフと面積の問題でも、方針は2次関数の場合と変わらない。 3次関数のグラフとx軸の交点のx座標を求めて、 積分区間を決める。 →交点のx座標は 2.x-x-2x+1=0 の解。 inf面積を求めるために解答にグラフをかくときは, 曲線とx軸との上下関係と、交点の 座標がわかる程度でよいから、微分して増減を調べる必要はない。 よって ② 上下関係を調べる 曲線 y=2x^²-x^²-2x+1とx軸の交点のx座標は, 方程式 2x-x-2x+1=0 の解である。 f(x)=2x-x-2x+1 とすると f(1)=2-1-2+1=0 f(x)=(x-1)(2x2+x-1) =(x-1)(x+1)(2x-1) f(x) = 0 を解いて x=1, -1, -1/1 ゆえに, 曲線は右の図のようになるか ら 求める面積Sは s=S² (2x²− x² −2x + 1) dx +₁(−(2x²-x²–2x+1)} dx -1 - [£* - - * + x] - [ € - -ײ+x] x2- 3 y4 1 PRACTICE 215 8 次の曲線とx軸で囲まれた部分の面積を求めよ。 (1) y=x-5x2+6x 0 1 1 x 2 −²² (4- )*- } ( )*-( )*+¦ } -(² + 3-2)-(2-3) 71 48 因数定理 ◆組立除法により 2 -1 -2 ~x/d++) f(x)=x²(2x-1)-(2x-1) =(2x-1)(x-1) =(2x-1)(x+1)(x-1) 2 1-1 2 1 -1 0 あるいは 11 としてもよい。 ← 2つ目の定積分は,一を 外に出すと, 1つ目の定 積分と被積分関数が同 じ。 ← [F(x)] - [F(x)]* (2) y=2x3-5x2+x+? =F(c)-F(a){F(b)-F(c)} =2F(c)-F(a)-F(b) inf 定積分は分数計算など煩雑な計算が多い。 解答の(*)のようにF(x) に代入する値は まとめて,計算の工夫をする。 The The 7:16-07-2:12 に 1-12 051 曲線 y=-x+5x 上に点A(-1, -4) をとる。 日本 例題 216 曲線と接線で囲まれた部分の面積 el (1) 点Aにおける接線の方程式を求めよ。 (2) 曲線 y=-x°+5x と接線l で囲まれた部分の面積Sを求めよ。 CHART & SOLUTION (2) まず, 3次曲線と接線の共有点のx座標を求める。 f(x)-g(x)=a(x-a)(x-β)が成り立つ。 3次曲線 y=f(x)(x2の係数がα) と直線y=g(x)がx=αで接するとき, (ここで、Bはy=f(x) と y=g(x) の接点以外の共有点のx座標) (1) y'=-3x2+5 であるから, 接線l の方程式は y-(-4)={-3(-1)2+5}{x-(-1)} 11 すなわち y=2x-2 (②2) 曲線と接線lの共有点のx座標は、方程式 x+5x=2x-2 すなわち x-3x-2=0 の解である。 ゆえに (x+1)(x-2)=0 ゆえに,図から求める面積Sは よって x=-1,2 s=S_{(-x+5x)-(2x-2)}dx = f_(-x+3x+2)dx =-X+2x+2x27 3 4 y₁ el ORACTICE 216 曲線C:y=-x+4xとする。 部 x 基本 214215 INFORMATION 定積分の計算の工夫 s=f(x+3x+2)dxの計算はp.319 基本例題 203 と同様に,次のように計算す るとスムーズである。 s=S_(-x'+3x+2)dx=-(x+1)(x-2)dx (4) 339 曲線と接線ℓ は x = -1 で接する (重解をもつ) から, (x+1)^2を因数に もつ。 よって, x³-3x-2 =(x+1)^(x+α) とおけ,定数項を比較し てa=-2 =f(x+1)^{(x+1)-3}dx=-S°_^{(x+1)-3(x+1)}dx(x+1) の形をつくる --[(x + 1)²-(x + 1)² -- +27=4 = [(x+1)* 81 C上の点(13) における接線と曲線Cで囲まれ 7章 25 LEI 積

未解決 回答数: 1
数学 高校生

240. これらの問題を記述で解く場合、図は必要ですか??

366 ID eas 00000 基本例題 240 3次曲線と面積 (1) 曲線 y=x-2x²-x+2 とx軸で囲まれた図形の面積Sを求めよ。 (2) 曲線 y=x-4x と曲線 y=3x² で囲まれた図形の面積Sを求めよ。 指針3次曲線 (3次関数のグラフ)であっても、面積を求める方針は同じ。 ① グラフをかく ②2 積分区間の決定 まず、曲線とx軸, または2曲線の交点のx座標を求める。 解答 (1) x-2x²-x+2=x2(x-2)-(x-2)=(x²-1)(x-2) =(x+1)(x-1)(x-2) よって, 曲線とx軸の交点のx座標は したがって,図から(笑) 求める面積は =2f'(-2x+2)dx-f(x-2x-x+2)dx s=S", (x²³-2x²-x+2)dx+²{-(x³2x²-x+2)]dxtal J-1 8 2 13 37 3 3 12 12 (2) 2曲線の共有点のx座標は, x3-4x=3x2 を解くと, x(x2-3x-4)= 0 から x=±1, 2 x(x+1)(x-4)=0 よって x=-1, 0,4 ゆえに,図から 求める面積は s=${(x-4x)-3x}dx =-(11+1-2)-(64-64-32)=4 Ly=3x² (*) 曲線の概形については、 2.2x2x321 参照。ここでは、毎 値を求める必要はない。 -1 0 +(3x²(x²³-4x) dx =f'(x-3x²-4x)dx-S(xー3x²-4x)dx -------- y y=x³-4x +32= dit (1) 3 上下関係に注意 131 (2) 東京電機 基本235.236 ya 2012年 練習 (1) 曲線 y=x3x²とx軸で囲まれた図形の面積Sを求めよ。 ²6 C とする。 Cとx軸で囲ます 240 (2) tha (2) 曲線 y=x²-4xについ て, y=x(x+2)(x-2)から、 X軸との交点のx座標は x = 0. ±2 また, 曲線 y=3x² は原点を 4 x 頂点とする。下に凸の放物線 2 F(x)とする と _=F(0)-F(-1) -{F(4)-F(0)) =2F(0)-F(-1)-F(4) ここで F(0)=0 recs 基本 曲線 形の 指針▷ y=3: 方程 3 すな この ポー これ ゆえ した 1

回答募集中 回答数: 0
数学 高校生

マーカー部分の区間ってどのように考えれば良いんですか?💦

04 基本例題 258 絶対値を含む関数の定積分 (1) Slx-2/dx を求めよ。 解答 指針 絶対値記号がついたままでは積分できない。 そこで,まず, 絶対値記号をはずす。 141= {¯) -A (A≦) ← 定積分の計算では,等号を A(A≧0) 両方の場合に付ける。 11をはずしたら、定積分の性質 S f(x)dx = S. f(x)dx+S" f(x)dx (積分区間の 割)を利用して計算する。 つまり, | |内の式の正負の境目で積分区間を分割する。 絶対値 場合に分ける |A|= (1) x-2=0とすると x=2 区間を1≦x≦2と2≦x≦4に分割。 (2) x2+x−2=0 とすると, (x+2)(x-1)=0からx=-2,1 → 積分区間 0≦x≦2 に x=1 が含まれるから,区間を 0≦x≦1と1≦x≦2に分割して計算する。 (1) 1≦x≦2のとき |x-2|=-(x-2) 2≦x≦4のとき |x-2|=x-2 (2) S²√x²+x−2\dx ***I. Slx-2|dx={(x-2)}dx+S2(x-2)dxc.) (1) = または (x3) |x2+x-2|=|(x+2)(x-1)|=2+ 2 scat (2) =- [²2/2² - 2x]²+ [ ²2 2² - 2x ] ₁ = 1トーナ =-{(2-4)-(1/23-2)+(8−8)-(2-4) 01 12 4 I 図の2つの赤い三角形の面 積の和として求めると --[2³² + であるから (2) 0≦x≦1のとき |x2+x-2|=-(x2+x−2) 1≦x≦2のとき |x2+x-2|=x2+x-2 であるから Slx+x-2|dx={(x+x−2)}dx+∫(x+x-2)dx == - 2x] + [²/537 0 8 =(1/3+1/12-2)×2+(10/+2-4 x3x2 /p.384 基本事項 重要 259 2 + 22²2 - 2x]²₁ (*) = 3 (*) * F(x)=1512xとすると, F(0)=0 で, 定積分は + 3 -[F(x)]+[F(x)]=-2F(1)+F(0)+F(2) となる。 問題の定積分は,それぞ れ図の赤く塗った部分の 面積を表す。 YA 1 1/2+2=1/5/20 (2) 4 (与式)=1/12・1・1+1/02 ·1·1+2·2 5 0 1 2 -2 _=-{F(1)-F(0)) +{F(2)-F(1)) 709

未解決 回答数: 1
1/14