学年

質問の種類

理科 中学生

Q. 中1理科 光の屈折応用  画像の(3)の考え方を教えてください

3 光の進み方を調べるために,次の実験を行った。 <群馬> 実験 図1のように, 茶わんの底に硬貨を置き, 点○から茶わんの中を見たところ, 硬貨は見えず茶わんの内側の点○' が見えた。次に, 茶わんの中に水を入れなが ら,点○から茶わんの中を見たところ、 図2の水面の高さまで水を入れたとき, 硬貨の点Aがはじめて見えた。 なお, 図の点線は,水を入れる前に点○から茶わ んの中を見たときに見えた点○' と, 点○を結んだ直線を示している。 (1) 光が水中から空気中へ進むときの、入射角と屈折角の大きさの関係として適切 図 1 目 点〇 硬貨 図2 「茶わん 点 点 水面 なものを,次から選べ。 点 A 図 3 ア 入射角<屈折角 イ 入射角=屈折角 ⑦入射角>屈折角 (2)作図 図2で、硬貨の点Aから出た光が点まで進む道すじをかけ。 (3) 図2からさらに水を入れた場合, 硬貨の点Bがはじめて見えるときの水面の高 さとして最も適切なものを, 図3のアウから選べ。 (1) (2) 図2に記入 (3) 4 光源,焦点距離が10cmの凸レンズ,スクリーン, 光学台を 使って、 図1のような装置を組み立て, スクリーンに像ができる 位置を調べた。 凸レンズの位置を固定し、 図1の矢印のように光 源とスクリーンを動かしていくと, 図2の位置に光源とスクリー 図 1 〇' 図2の水面 点B スクリーン IT 凸レンズ 光源

回答募集中 回答数: 0
現代文 高校生

尚文出版基本の現代文からですこの答え教えて欲しいです🙇‍♀️

ステップ 18 80 ステップ LISSTOH ステップ1 長文に取り組もう 鉄のしぶきがはねる 要約シート (技術は体の内側に) ミリ単位以下での正確さが求 められるでは、体がおぼえている感覚が頼 り。 技術はまさに〈身につける〉ものなのだ。 桃 (注) 工業高校でコンピューターを学ぶ心は、祖父が経営していた金属加工の工場が閉鎖して以来、手作業より もコンピューターを信頼するようになった。しかし、ひょんなことから「ものづくり研究部」の活動を手伝う ことになり、高校生たちがその技能を競う「ものづくりコンテスト」(ものコン)への出場を決意する。 1 ゴールデンウィークを間近に控えた四月の終わり、部活のミーティングで三つのことが伝えられた。 「毎年のことやけど、連休の間も練習はあります。」 「はい。」 だれもが真顔でうなずいた。 今は一本でも多 くの課題部品をつくりたい時期だ。反復練習、反復練習。練習を重ねて、体に課題の感覚をおぼえこませ ておきたい。 (1) 図「ついては五月の連休に特別講師に来てもらうことになった。」 「小松さん帰ってきたんですか?」 「い や」声をあげる心に、先生は小さく首を振って言った。 「本校の卒業生、さきはらゆきこさんだ。」 ③ 崎原、由希子? どこかできいたことがある。名前をきいただけなのに、心の頭の中でなぜか漢字に変 換された。もしかして。 顔を上げた心に、「そうだ。」というように先生はうなずき、「本校の卒業生。も のコン〉の全国三位入賞者よ。 大手機械メーカーに就職して、今は〈技能五輪>の強化選手としてがんばっ (注2) 目標6分 解答時間 目標15分 本文 1小松さん技術者。「ものづくり研 究部」に指導に来ていた。 2技能五輪若い職人たちが、それ ぞれの技術を競う大会。 3旋盤鉄を削って加工する技術。 根拠のある二つの事柄 4二律背反 の、つじつまが合わないこと。 5テーパー金属部品の一種。 6隅肉金属加工の技術。 7原ロー「ものづくり研究部」の部員。 要旨をつかむために! 空欄を埋めていこう ○ 文章展開図 【各2点】 100 1部活のミーティング 連休の間も練習 とる。」 20特別講師・・・ 崎原由希子さん (注4) 一度しか見ていないはずの笑顔が、くっきりと思い出された。 初めて見たとき、心はあの笑顔に抵抗を おぼえた。旋盤に対して複雑な思いがあったからだ。工場を造り、壊した。懐かしいけれど、つらい。好 きだけれど、嫌い。旋盤は心にどうしようもない二律背反をつきつけてくる。それにまっすぐに取り組む ことのできる崎原さんの笑顔を、ちゃんと見ることができなかった。 ごちゃごちゃと引っかかる思い出を (注3)せんばん 忘れたくて、コンピューターの世界を選んだつもりだった。 3 15 ⑤「ほら、この人よ。」先生は持っていたファイルの中から、見覚えのある新聞のコピーを取り出した。課 部品を手にした崎原由希子さん。 7-6 5~ ④心 初めて見たとき 笑顔に抵抗をおぼえた ・・・旋盤に複雑な思い 印象が違う はちきれんばかりに 笑顔の裏側 ごからものが、心には今ならわかる 毎日の地味な 毎日の地味な積み重ね ↓ 19 ステップ1 小説 「こんな人でしたっけ。」 その笑顔から受ける印象があまりに違うことに、心は少しうろたえた。あのと いと はにかむような控えめな微笑み。 けれど、はちき した笑顔は、そこにはなかった。 積み重ね。真夏はだらだらと滴る汗をぬぐいながら、冬は凍えるほど冷たい指先にたえながらの練習。膨 大な時間をツイやして練習をしても、体に残るものはほんのわずかだ。 やってられないほど効率が悪かっ た。けれどわずかながらも確かに身につくものがある。だから続けられる。 (注5) (注6) みにく ミジュクながら、テーパもネジもつくれるようになった。隅肉もなんとかやれる。 崎原さんの笑顔に隠 れているのも、たぶんそういう自信だと思う。もっと練習すれば、もう少しうまくなれるんじゃないか。 25 そういう期待。たぶん。 まだまだ全然追いつけないけれど、 崎原さんの体のなかにあるものを、自分も少 しはつかんでいると心は思う。だからこんなに崎原さんの笑顔がまぶしく見えるのだろう。 出たい。 「それから」 中原先生は声を引き締めた。「校内選考は、例年どおり六月初めだ。中間テスト明けでも あるけど、あわせてがんばってくれ。」 すっと冷ややかな空気が流れた。 校内選考。 選ばれるのはひとり。か、ふたり。 下腹にぐっと力が入っ 30 (注7) 能性が残っている。 た。自分でも意外なほどの思いが込み上げてきた。ひとりは原口に決まっているにしても、もうひと枠可 混じりけのない、ただまっすぐな思いだった。突然、途方もないような道が目の前に開けたみたいな気に なる。 地区大会、九州大会、全国大会。意味なんかいらない。 とにかく行けるところまで行ってみたい。見え 35 ているところには行ってみたい、それだけだ。ストレートな思いが、つき上げるように心の胸に湧いてきた。 ガイドの →間五を攻略 原さんの笑顔に対して、かつて心が抱いた印象に線、改めて見た際の印象に線を引こう 2 ... 確かに身につくもの ・期待 ○校内選考 心 なほどの思い 出たい 行けるところまで 行ってみたい 大きくとらえよう 要約への第一歩 【4点】 場面 心が崎原さんの写真を見る 心の心情 〈ものコン〉に 〇場面 という思いが込み上げる 理解を深めよう 要約のための確認 崎原さんの写真を見る →笑顔が輝いて見える ○状況 崎原さんの笑顔の裏側 心の心情 今ならわかる・・・自信・期待 まっすぐな思い出たい →行けるところまで 行ってみたい

回答募集中 回答数: 0
理科 中学生

物理の凸レンズです。 ⑴② と⑶②がわかりません。 解説お願いします。

スクリーン 5 物体の位置と凸レンズでできる像図 のように、物体を光学台に固定し、凸レ ンズとスクリーンの位置を動かしてスク リーンにはっきりした像ができたとき の物体と凸レンズの距離α と, 凸レン ズとスクリーンの距離を測定した。 表 物体(矢印形 の穴を開け凸レンズ た厚紙) 光源 結果 距離〔cm〕 a b 1 45 30 236 36 330 45 は, その結果をまとめたものである。 次 光学台 の問いに答えなさい。 5の答え (1) 結果1で, スクリーン (1)① にできた像を. ①物体の 側から見たときと. ②矢印 (←)の向きに見たときに,どのように 見えるか。 右上のア~エから選び、それぞれ記号で答えなさい。 (2) 結果1と3で, スクリーンにできた像の大きさは、物体の大き さと比べてどのようになっていたか ② (2)結果1 (3) 結果3のあと, 距離αを小さくしたところ, スクリーンをどこ に動かしても像がうつらなくなり、スクリーン側から凸レンズを のぞくと, 凸レンズを通して拡大された物体の像が見えた。 ① このとき見えた像を何というか。 結果 3 (3)① ② この像が見えたのは, 距離 αを何cmにしたときか。 次のア~ エのうち、もっとも適当なものを選び, 記号で答えなさい。 ② ア 16cm イ 18cm ウ20cm I 22cm

回答募集中 回答数: 0
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0
1/235