学年

質問の種類

物理 高校生

高校1年の物理基礎、加速度についての質問です。 写真下線部のところで、なぜ0.1で割るのか理解できません。加速度とは1秒間に速度がどれくらい増えるのかを表すものですよね? 図では0.040を0.4にすでに秒速に直しているため、1秒に0.16m増えるということになりませんか... 続きを読む

10 第1運動とエネルギー Let's Try! 例題 5 加速度 <-11 斜面に台車を置き, 静かに手をはなして台車を運動させ,このようす を1秒間に50打点打つ記録タイマーでテープに記録した。 台車 このテープの5打点ごとの長さを測定したところ, 右下図のようにな った。この数値を分析して, 台車の加速度の大きさを求めよ。 解説動画 A B D タイマー テーブ E 0.040m 0.056m 0.072m 0.088m 指針 5打点の時間は0.10秒である。 0.10 秒ご との平均の速さを, 各区間の中央の時刻にお ける瞬間の速さとみなしてその差をとると, 同じく 0.10 秒ごとの速さの変化が得られる。 解答 0.10 秒ごとの平均の速さを求め、その差 を0.10秒で割ると, 平均の加速度が得られ る(右表)。 0.10秒ごとの 移動距離 (m) 0.10 秒ごとの速 各区間の平均 平均の加速度 の速さ(m/s) さの変化(m/s) (m/s²) AB 0.040 0.40 0.16 1.6 BC 0.056 0.56 0.16 1.6 CD 0.072 20.72 0.16 1.6 99 DE 0.088 0.88 よって 1.6m/s2

回答募集中 回答数: 0
理科 中学生

(3)と(5),(6)がわかりません。 計算過程を詳しく教えてください

3 図 1 図2 1秒間に60回打点する記録タイマー、記録テープをとりつけた台車、滑車と糸のついたおもりを用いて,水 平面上で図1のようにセットした。この状態で台車から静かに手をはなし,台車が点0を通過した瞬間から記 録タイマーを作動させ,記録テープに記録した。おもり は床についたあとははずんだりせず,台車の運動状態に 影響をあたえないものとする。また,この実験では摩擦 による影響はなく,台車は滑車に衝突しないものとする。 図2は、このテープを6打点ごとに切って左から順には ったものである。各テープの長さをはかったところ,右 の表のようになった。 <東大寺〉 3.56.05.5 記録タイマー おもり 床 a b c d e f 区間 a b C d e f 長さ[cm] 3.50 6.00 18.50 10.80 11.25 11.25 (1) 区間 a での台車の平均の速さは何cm/sか。 (2)区間 aからbの間について,台車がこのまま加速を続けたとしたら, 1秒間で台車の速さは何cm/s増加 するか。 (8) 台車が点0 を通過した瞬間の速さは何cm/sか。 (4) おもりが床についたのは,区間 a ~ f のどれか。 台車が点を通過してから,おもりが床につくまでの時間は何秒か。 (C) 台車が点0を通過したとき,床からおもりまでの高さは何cmか。 (7) 図3のように, おもりの先にもう1つ同じ重さの別のおもりを糸でつり下 げてから静かに手をはなして、 図1と同様に測定した記録テープを6打点ご とに切って左から順にはるとどうなるか。 次から選べ。 H a b c d e f a b c d e f a b c d e f a b c d e f 図3 別のおもり

回答募集中 回答数: 0
数学 中学生

二次関数の問題をちょうど今習っている物理の知識で解こうとしたら、解けませんでした。写真が全てなのですが、これからはノーマルなやり方でやろうとは思っています。でも、なぜ私のやり方ではできないか知りたいです。どちらの分野かわからず、数学と理解の両方に投稿しておりますが、気になさ... 続きを読む

物を落とすとき,落下し始めてからæ秒間に落下する距離をymとすると,yは xの2乗に比例する。 27mの高さから落下させた物が3秒後に地面に着くとし て,次の問いに答えなさい。 十分な高さから物を落とすとき, 落下し始めて4秒後から7秒後までの間の平均の速さを求め なさい。 ①ノーマルなやり方(理解できているやり方) yを人の式で表すとy=3x²と表せることから、 4秒後の距離は3×(4)=48m 7秒後の距離は……3×(7)=147m よって4~7秒の3秒間で、14ワー48=99m進んだので 距離 時間 速さ より 99 =33 3 A平均の速さは33m/s 理科の物理では、その区間の中央時刻の速さが平均の速さと ex (2~4秒の平均の速さ=3秒の瞬間の速さ) 理解しています。 ②疑問 等加速運動では 二次関数 になる。 時間 距離 時間A 比例 A時間における 平均の速さは 1時間の時の 速さ しかし、このやり方で問題をとくと 55秒における瞬間の速さ 33 (3×12×1/2)+(1/2):22:16.5となり、 距離 時間 答えの33mとあわない

回答募集中 回答数: 0
理科 中学生

二次関数の問題をちょうど今習っている物理の知識で解こうとしたら、解けませんでした。写真が全てなのですが、これからはノーマルなやり方でやろうとは思っています。でも、なぜ私のやり方ではできないか知りたいです。どちらの分野かわからず、数学と理解の両方に投稿しておりますが、気になさ... 続きを読む

物を落とすとき,落下し始めてからæ秒間に落下する距離をymとすると,yは xの2乗に比例する。 27mの高さから落下させた物が3秒後に地面に着くとし て,次の問いに答えなさい。 十分な高さから物を落とすとき, 落下し始めて4秒後から7秒後までの間の平均の速さを求め なさい。 ①ノーマルなやり方(理解できているやり方) yを人の式で表すとy=3x²と表せることから、 4秒後の距離は3×(4)=48m 7秒後の距離は……3×(7)=147m よって4~7秒の3秒間で、14ワー48=99m進んだので 距離 時間 速さ より 99 =33 3 A平均の速さは33m/s 理科の物理では、その区間の中央時刻の速さが平均の速さと ex (2~4秒の平均の速さ=3秒の瞬間の速さ) 理解しています。 ②疑問 等加速運動では 二次関数 になる。 時間 距離 時間A 比例 A時間における 平均の速さは 1時間の時の 速さ しかし、このやり方で問題をとくと 55秒における瞬間の速さ 33 (3×12×1/2)+(1/2):22:16.5となり、 距離 時間 答えの33mとあわない

回答募集中 回答数: 0
1/10