学年

質問の種類

数学 高校生

上から4行目はなぜこうなるのですか?

基本 例題 29 漸化式と極限 (4) *** 連立形 00000 P1(1, 1), Xn+1 1 = 4 4 xn+n, In+1= 5 3 -xn+ 4 面上の点列 Pn(xn, くことを証明せよ。 指針 点列 P1, P2, yn) がある。 点列 P1, P2, 1 5yn (n=1, 2,......) を満たす平 がある定点に限りなく近づくことを示すには,lim, limyn がと はある定点に限りなく近づ [類 信州大 ] p.36 まとめ, 基本 26 n→∞ もに収束することをいえばよい。 そのためには,2つの数列{x},{y}の漸化式から Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意のようになる。) 811 Xn+1= 1 3 xn+ yn ①, Yn+1= 解答 4 1 x n + 1 − y n 5 Yn ② ①+② から Xn+1+yn+1=Xn+yn P1(1, 1) から x+y=2 x=1, y=1 よって xn+yn=xn-1+yn-1==x+y=2 ゆえに yn=2-xn これを①に代入して整理すると 11 Xn+1= xn+ 20 85 32 変形すると 11 32 Xn+1 xn 31 20 31 32 1 また X1 31 31 32 ゆえに Xn =- 31 31/ (-20 n-1 32 1 よって n→∞ また 32 30 limxn=lim no31 31 limyn=lim (2-x)=2- 1+0=and -20))} = 32 Q=-- a+ 32 31 数列{X-3は 1 |Xn+1= xn+ 特性方程式 11 20 8-5 の解 a= 公比 31 ラ 11 31 - 20 818 n→∞ 31 31 比数列。 y=2xから。 したがって, 点列 P1, P2, ...... は定点 31' 31 3230 に限りなく近づく。 一般に, x=a, y=b, xn+1=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる {x}, {yn} の一般項を求めるには, 次の方法がある。 方法1 Xn+1+αyn+1=β(x+αyn)としてα, β の値を定め, 等比数列{xn+yn} 用する。

未解決 回答数: 0
数学 高校生

どうして、底を2にするんですか??

重要 例題 38 ant = pa," 型の漸化式 | a1=1, an+1=2√an で定められる数列{an} の一般項を求めよ。 00000 【類近畿大 指針 がついている形, an² や an+13 など 累乗の形を含む漸化式 an 解法の手順は an+1=pa ① 漸化式の両辺の対数をとる。 an の係数かに注目して、底がりの対数を考える。 10gpan+1=10gpp+logpang すなわち 10gpan+1=1+glogpan 2 10gpan=bn とおくと bn+1=1+gbn → -logeMN = logM+log.N loge M=kloge M bn+1=bn+▲の形の漸化式 (p.464 基本例題 34 のタイプ)に帰着。 対数をとるときは, (真数)>0 すなわち a">0であることを必ず確認しておく。 CHART 漸化式 αn+1=pan" 両辺の対数をとる α=1>0で,n+1=2√an (>0) であるから,すべての自 解答然数nに対してan>0である。 よって, an+1=2√an の両辺の2を底とする対数をとると 10gzAn+1=10g22√an log2an+1=1+110gzan 2 bn+1=1+1/26n ゆえに 初 10gzan=bn とおくと これを変形して bn+1-2=(bn-2) ここで b1-2=10g21-2=-2 > 0 に注意。 厳密には,数学的帰納 で証明できる。 log₂(2.an) =log22+ log. 特性方程式=1+10 基本 α=2, (1) n (2) ar 指針 解答 よって, 数列 {b,-2} は初項 -2,公比 1/2の等比数列で n-1 b-2=-20 =-2(12) - すなわち bn=2-22- を解くと α=2 12 したがって, 10gzan=2-22 から an=22-22- \n-1 =21- logaan-pan-d 早 検 PLU anan+1 を含む漸化式の解法 実討 anan+1 のような積の形で表された漸化式にも 例えば 両辺の対数をとるが有効である。 LON

未解決 回答数: 1
数学 高校生

赤で印を付けた所のan=にする方法が分かりません😭隣の※の所をみても分かりません💦

468 基本 36 an+= pa,+g”型の漸化式 解答 00000 =3a=20.3 によって定められる数列(大般項を求めよ。 用して考えてみよう。 指針 漸化式 α+1=pan+f(n) において,f(n)=g" の場合の解法の手順は 基本 34 基本42,45 ①f(n) に n が含まれないようにするため, 漸化式の両辺を Q+1で割る。 anti-.an1 gg” - f(n) = となり,nが含まれない。 [2]=b, とおくとbn+1= q →bm+1=@bn+の形に帰着。・・ n+1で割る CHART 漸化式 αn+1=pan+g" 両辺を g" an+1=2an+3+1 の両辺を 37+1で割ると =b とおくと 2 • an+12.an 3n+1 3 3n = bn+1= -bn+1dc=d. 2an 2 an +1 3n+1 33" の方針 an 3 3" (S+ d) Stad 2 これを変形すると bn+1-3= (bn-3)-d 3 a1 3 また b1-3=3 -3= --3=-2\ 3 2 よって, 数列{bm-3}は初項-2,公比 の等比数列で 2n-1 bn-3=-2(3) an=3"bn=3.3"-3・2・2n-1(*) 33.2" ゆえに an=3-2(3) n-1 an+1=pan+gなど 既習の漸化式に帰着 させる。 特性方程式 2 a=1/23a+1から α=3 2 よって J [別解] an+1=2an+3+1 の両辺を2"+1で割ると An+1 an 3 + 2n+1 (22) an 3 \n+1 a1 3 + 2" よって, n≧2のとき n=1/3\k+1 bn=b₁+ k=11 n-1/2 =b₁+ Σ k=1\ (2)()-1) 3 2 2 =30 3 ) = = 2¹ 2 2/10)+ ① 3-13() -3.0 ((+2 =3.31.2.5 2-1 31 an+1=pantq は、 辺を+1で割る方法 でも解決できるが, 差数列型の漸化式の 処理になるので,計算 は上の解答と比べや や面倒である。 n=1のとき 3(1/2)-3=12/27 b=1/2から、①はn=1のときも成り立つ。 したがって an=2"bn=3.3"-3.2"=3" + 1-3.2" ゲーム a

未解決 回答数: 0
数学 高校生

開設の2・3行目の左辺は何を表しているのですか?

476 基本 41 隣接3項の漸化式 (1) 次の条件によって定められる数列{a} の一般項を求めよ。 0000 P.475 基本事項■ 解答 (1) α1=0, a2=1, an+2=an+1+6am (2) α11=1, a2=2, an+2+40n+1-5an=0 指針 まず+2 をx, anti を x, an を1とおいたxの2次方程式 (特性方程式)。 その2解をα, β とすると, αβのとき In+1 ants-aan+=(anti-aan) ans. Bana(ann-Bar) が成り立つ。この変形を利用して解決する。 ® (1) 特性方程式の解はx=-2, 3→解に1を含まないから、 A を用いて2 表し,等比数列{an+1 +2an}, {an+1-3a} を考える。 (2) 特性方程式の解は x=1, 5→解に1を含むから,漸化式は an+2-Qn+1=-5(4n+1-αn) と変形され, 階差数列を利用することで解決できる。 (1) 漸化式を変形すると an+2+2an+1=3(an+1+2a) an+2-3an+1=-2 (an+1-3an) ①, ①より, 数列{an+1+2an} は初項a2+2a1= 1, 公比3の 等比数列であるから an+1+2an=3n-1 ②より, 数列{an+1-3an} は初項α2-3a1= 1, 公比-2 の等比数列であるから an+1-3an=(-2)"-1. ④C x=x+6を解くと、 (x+2)(x-3)=から x=-2,3 α-2,B=3として 針の人を利用。 基本 次の ③ ④ から 5an=3"-1-(-2)"-1 したがって an= -{3"-1-(-2)"-1} 5 (2) 漸化式を変形すると an+2-an+1=-5(an+1-an) で ゆえに, 数列 {an+1-an} は初項α2-a1=2-1=1, 公比 -5の等比数列であるから an+1-an=(-5)-1 よって, n≧2のとき k=1 13. 1・{1-(-5)"-1} 1-(-5) (8-8)- n-1 an=a+2(-5)=1+ (7-(-5)) n=1 を代入すると, 1/3 (7-(-5)") =1であるから,上の an+1を消去 x2+4x-5=0を解くと (x-1)(x+5)=0から x=1, -5 別解 漸化式を変形して an+2+5an+1=+1+5, よって+1+5an =an+50-1 & & &=......= α₂+50 an+1+5a=7 を変形し 7 an+1- 合 式はn=1のときも成り立つ。 したがってan=1/12 (7-(-5)^-'} an - 76 7-6 .. a.=(7-(- an Ad

未解決 回答数: 0
1/19