学年

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

シュレーディンガー方程式の範囲です。 式を求める所までは分かったのですが、エネルギーの求め方が分かりません。 n=5です。 解き方教えてください。

こで、彼にはk= (c) /hとなり、波数とエネルギーの関係が決まる。 一方、=0での波動関数に対 する境界条件から、 C1=0が決まり、 また、æ=bでの波動関数に対する境界条件から、nを正の整数 (n=1,2,3,...) としてkb (d) が与えられる。よって、エネルギーEの解は各nに対応したとびとび の値 En をとり、その値は20 = になる。 22 En = 2m62 n² (5) 今、この解を使って、 近似的に1,3,5,7,9デカペンタエンにおける電子の状態を求めてみよう。 この 近似のもとでは、エネルギーの低い準位から順に、量子数n=(e)の軌道まで電子がつまっている。 こ の分子が光を吸収して、量子数n=(e) の軌道の電子が励起し、 量子数がひとつ大きい軌道 (節は (f) 個) に遷移するときに必要となるエネルギーは、以下の式で与えられる。 5 22 = 2m62 Ent1 - En (9)+1) n = 5 2n (6) これより、吸収する光のエネルギーを計算しeVの単位で示すと、(h) eVである。ただし、んん/(2m)、 b=12.0Å、プランク定数ん=6.63 × 10-34 Js、電子の質量m=9.11 × 10-31 kg、1 eV= 1.60 × 10-19 書くこと。 Jとする。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

【急募】 大学の一般化学(量子力学)の問題です。 波動関数とか、ハミルトニアンとか、、、 わかる問題だけでもいいので解説をお願いします🙇‍♀️🙇‍♀️

全 xce 以下の問題に答えよ。 文字の定義は授業と同じ。 (1) 水素原子における電子のハミルトニアンは,次のように表される。 H² (2 0 - (1² or) + A = - 2me ər (3) • ● Cear HA EGERSAR 0. ●(r, 0,y) = Cerがシュレディンガー方程式の解になるようにαを定め, エネルギー固有値を求めよ。 答えはボーア半径 (do AREOR² = ト) を使った表記とすること。 meez (1,0p) = Crer coseがシュレディンガー方程式の解になるようにβを定め、エネルギー固有値を求め よ。 答えはボーア半径 (a 402. m₂e² を使った表記とすること。 ・規格化定数を求めるために以下の計算を行う。 空欄 ①~③を埋めよ。 以下の問いに答えよ。 AT THE ARE ● = 1 a 1 ²sine 00 (sines) + ²in²00²)- ressin20a2 Sy2dt = fffy2r2sin0drdodyを変数分離し,各変数ごとに定積分を行う。そ に関する定積分を実行すると (1) (B)-SIEDS F 9 に関する定積分を実行すると CARTE* ONE 31011218018 積分公式Sorne-br drを使ってrに関する定積分を実行すると 従ってC=1/√32ma5 水素様原子のシュレーディンガー方程式は 1²/10 a 1 ə rasino ao (1-²2 20 (²²0). + ər arl 2m (2) 水素原子における1s軌道の波動関数は Cer/ で与えられる。 ただしは規格化定数である。 動径分 VEAU 布関数電子が原子核から距離rの球面上に存在する確率密度) の極大値を求めよ。 HOFFE HISENSE CO 2 SMERES a sino 200+ E = 4πεr 1 2² Ze² y(r,0,9). ressin2002 4πεor である (ポテンシャルエネルギーの項で, e2がZe2になっている)。 以下の問いに答えよ。 100 Jy² dr VEEBR 3 TERENGUKS GA ここで各原子 (4) H2分子の分子軌道を水素の1s原子軌道XA XBの線形結合↓ =CaX^+ CaXで近似する。 軌道の中心はそれぞれ原子核 (H+) A, B である。 1電子エネルギーの期待値は=(2) Syd_cha+Cfa + 2CACBβ (8− 1)\1 = (x1 T4² dr C+C E = で与えられる。 ただしα, βはそれぞれクーロン積分, 共鳴積分であり、重なり積分は無視している。 ERSACERO 以下の問いに答えよ。 (1) Eが最小になる条件から永年行列式を導け。 永年行列式を解いて、 結合性軌道のエネルギーを求めよ。 1 514 r' =Zrとおいてrとp(r', 0,p)を用いたシュレディンガー方程式を書け。 水素原子の規格化された原子軌道とエネルギーをそれぞれce", Enとして, 水素様原子の1s軌道 のエネルギーと規格化された波動関数を求めよ。 答えにC, α, Enを使ってよい。 C²+C² (r,0,0) = E(r,0,9) (5) 異核2原子分子 AB の分子軌道を原子軌道XA XBの線形結合 = CAXA CBXBで近似すると, 1電子工 ネルギーの期待値は Sdr_chan+Cfap+2C^CBβ TOUCU BOUCA

回答募集中 回答数: 0
1/3