学年

質問の種類

数学 高校生

この問題の意味が分かりません。詳しく教えてもらえると嬉しいです。

= ANBOC 立つ。 ヨッ ように A∩B ={0,k} であるから, 集合Aの要素に0が含まれる。 t < s より s-t> であるから, 集合A の要素について s2-st+4=s(s-t) +4>0 よって、Aの要素のうち0となるのはピーヒー12である。 すなわち t2-t-12=0 問題 44k, s, tは正の整数で, t<s とする。 A = {2, s'-st+4, e-t-12}, B= {0, s2-3s+2, s2 -t2} に対して, A∩B={0, k} が成り立つとき, k, s, tの値をそ れぞれ求めよ。 (東京工科大 改) A, B の共通部分に 0 が 含まれているから0A の要素の1つである。 s-st+4は正の値しか とらないから 0 である ことはない。 (t-4) (t+3) = 0 より t = -3, 4 2}, >0より t=4 正の Q このとき A={2, s2-4s+4,0}, B ={0, s-3s+2, '-16} の値を代入する。 A∩B ={0,k} より, 集合 A, B には共通する要素がもう1つある。 A, B には0以外にも共 (ア) sa - 4s +4=s-3s+2のとき s = 2 このとき, t<s を満たさないから不適。 (イ) s' - 4s+ 4 = s2-16 のとき このとき, t<s を満たす。 s=5 よって, A={2,9,0}, B = {0, 12, 9} となり A∩B ={0, 9} すなわち k = 9 (ウ) s2-3s+2=2のとき 整理すると s(s-3)=0 > より s=3 このとき, t<s を満たさないから不適。 範囲 (エ) s' - 16=2のとき s2 = 18 となるが, sは正の整数であるから不適。 (ア)~(エ)より k=9, s = 5, t = 4 ( 通する要素がある。 (ア)(イ)は≠2 (共通す る要素が2以外)の場合 である。 (ウ), (エ)はk=2 (共通す る要素が2) の場合であ る。

未解決 回答数: 0
数学 高校生

❓マークがついているところで、 2b-aとgが〜から、g=1になるところがわかりません。 教えてください。

第4問 整数の性質 【解説】 (1) P 27+31 2n+1 (2n+1)+30_ 2n+1 + 30 2n+1 Pが整数となるのは, 2n+1 が30の約数のときであるから, 2n+1 (nは正の整数) が3以上の奇数であることを考慮すると、 2n+1=3,5, 15. ②x2- 2n+2=26g - 2n+1= ag 22m²+78m+56 R= (n+m)(2n+1) nmは整数であるから,Rが整数のとき、 Q-(n+m)R このときの値は(3)より, も数である よって、 1 = (26-a)g なる。 であり,それぞれのの値に対して, Rの頃は次の表のように 1,2,4,7,22 n= 1 1 n 1 2 4 7 22 (2) 2n+1 a b を用いて、 +1 は、 最大公約数および互いに素な正の整数 とすことができる。 ②x2-(より, [2n+1=0. n+1=bg 2 b-ag= 2b-a とgはともに整数であり, g≧1 であるから, 52 60 R 80 112 276 m+1 m+2 m-+-4 m+7m+22 ... a また, n=1,2,4,7,22のそれぞれの額に対して,m=0 の ときのRの値は次の2のようになる。 2 n 1 2 47 22 R 52 30 20 16° 138 11 g= 2③ したがって,m=0 のとき,Rがとり得る異なる整数値の総和 は、 (3) 22m²+78n+56=(n+1 (22n+56 56-11=45 =(n+1){11(2n+1)+ 45 52+30 +20 +16 118 以下,60 とする. n=1のとき, m +1≧61 より より, 22m² +78n+56 Q= 2n+1 2ntlentli 互いに素だから 割りきれない. (n+1)(11(2n+1)+45} 2n+1 (+1)(1+ 45 2 2n+1 2n+1 =11(n+1)+45(n+1) ここで, (2) より 2n+1 と n+1 の最大公約数は1, すなわち, 21n+1 は互いに素であるから, Qが整数となるのは, 2n+1 が45の約数のときである。 2n+1 が3以上の奇数である ことを考慮すると, すなわち 2n+1=3,5, 9, 15, 45 n=1, 2, 4, 7, 22. よって, Qが整数となるの値は全部で5 個ある。 m+1 <l すなわち <R<1 であるから, Rは整数ではない、 n=2のとき,m+262 より 0<- m+2 であるから, Rは整数ではない. くすなわちくR<1 n4のとき、 80 m+4 が整数となるのは、+4 が 80 の約 のときである+464であることを慮すると、 m+480 すなわちm=76. 7のとき、が整数となるのは、+7 が112の約 数のときである。 767 であることを考慮すると、 m m+7=112 すなわちm=105. n=22 のとき,mmが整数となるのは、+22276(火 約数のときである、+222であることを考慮すると、 -26- -27-

解決済み 回答数: 1
1/401