学年

質問の種類

数学 高校生

考え方で、⑴では、最大値が負であればよくて、⑵では最小値が正であればよいとありますが、どっちが最大値でどっちが最小値でみるのか、見分け方はありますか?(負であればよい、正であればよいという部分は、不等号の向きできまっていると思うのでわかっています) また、⑵で、場合分けを... 続きを読む

Dark 例題 75 ある区間でつねに成り立つ不等式 次の条件が成り立つような定数の値の範囲を求めよ。 **** 125x で、つねに が成り立つ。 4ax+4g+8<0 2x、つねに が成り立つ。 4ax+4g+8>() 第2 考え方 グラフで考える。/(x)=xax+44 +8 のグラフは下に凸 区内での人質が息であればよい。 であればよい。 (2)区内での最小 f(x)=(x-24-40°+40 +8 f(x)=x-4ax+40 +8 とおくと (1) y=f(x)のグラフは下に凸なので 2 である. 6での最大値(2)または(6) つねに f(x) <0 となる 条件は、 A どちらも負になれば よいから、場合分け はしない。 f(2)=-4q+120 (6)=-20a+44 < 0 これをともに満たすのは、 a>3 (2) y=f(x)のグラフは下に凸で,軸は直線x=24 (i) 2a <2 つまり α <1 のとき 26 での最小値はF(2) よって, 求める条件は, 下に凸なので、最小 となるのは軸. 左端 x=2. 右端x=6の いずれか (2)=-4a+12> 0 したがって a<3 26x 軸の位置で3通りに 場合分け これと a <1より, a <1 (ii) 2≤2a≤6) 1Sa≤3 よって、 求める条件は, f(2a)=-4a²+4a+8>0 必ず、場合分けした 範囲と合わせる。 2x6 での最小値は(24) したがって,-1<a<2 2 2a 6x これとsaより, 1sa <2 (i) 6 <24 つまり 4>3のとき 2x6 での最小値は (6) a-a-2<0 (a+1)(a-2)<0 -1<a<2 よって、求める条件は, f(6)=-20g+44 > 0 したがって, a<1 これとα>3 より 解なし よって, (i)(iii)より, a<2 (i) (日) 2 a ●場合分けしたものは、 最後はドッキング

回答募集中 回答数: 0
英語 高校生

対数関数の問題です。 194例題についてですが、最後実数解の個数が3個4個になっている理由がわかりません。y=aとy=-t2+2tの共有点の個数=実数解の個数だと思っていたのですが、

000 演習 例題 194 対数方程式の解の個数 の解をも 本女子大] 基本173 なるとの る。 よい。 00000 aは定数とする。 xの方程式{log2(x2+√2)}-210g2(x2+√2) +α=0 の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x+√2)=t とおくと, 方程式は t2-2t+α=0 ...... (*) 基本183 22 から, tの値の範囲を求め, その範囲におけるtの方程式 (*)の解の個 数を調べる。 それには, p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 log2(x2+√2)=t t2-2t+α=0 ① とおくと, 方程式は より,x2+√√2 であるから log2(x2+√2) log2√2 y=f(t) したがって ② また、①を満たすx の個数は,次のようになる。 = 1/12 のとき x=0の1個, 311 20 t -2)²+5a-10 11/23のときx>0であるから -2t+α=0から 2個 -t2+2t=a x2+√22より x=2√2 であるから 1/1/2のとき x=0 t= 11/21のときx>0 よってx=±√2-√2 y↑ よって、②の範囲における, 1 放物線y=-t+ 2t と直線y=a 3-- y=a <直線y=α を上下に動か 4 の共有点の座標に注意して, a して共有点の個数を調 べる。 方程式の実数解の個数を調べると, 01 1 32 t 2 2 a>1のとき0個; 5a+6 3 a=1, a<- のとき2個; 共有点なし。 11/23 である共有点1個 3 る。 4 a=2のとき3個; 3 <a<1のとき4個 2 11/23 である共有点2個。 つの実数解をも a. 6は定数とする。 xの方程式 (10g2(x2) -alog2(x+1)+a+b= 0 が異なる 2つの実数解をもつような点 (a, b) 全体のを,座標平面上に図示せよ。 p.312 EX 125 5章 33 関連発展問題 城 に

回答募集中 回答数: 0
古文 高校生

この問題で、会話文の最後はわかるのですが、なぜはやくからなのかがわかりません!てでっkれるから琵琶からではないのですか?? 会話文がどこから始まるか見極める方法も教えていただけたら嬉しいです😭

四段活用 基本 チェ 活用表を完成 読む 読む 読め め 読読 読読 読読読 上達は情熱のたまもの む 助動詞「ん」とも表記される。未然形の下につき、 推量(~だろう)・意志(~よう)などの意味をそえる。 ちゃく (む) ふよう 嫡女、七歳の年、あまりに不用にて走り遊びけるを、懲らさんとて、所持 長女が 稽古を怠けて (父が)懲らしめようとして、 (長女に) びは の小琵琶をとり隠して、はやく不用を道に立てて、琵琶などをば心になかけ 持たせていた 取り上げ 怠けることを専門にして、 かけるな めのと www そとて、しばしとり隠したりけるを、をさなき心にあさましく嘆きて、乳母 (長女は)幼心に ひどく 乳母を たいじゃう b にともすれば、うれへ怠状しけれども、なほ許さず。 通して折々に、 から、 悲嘆の気持ちを訴え謝ったけれども、父は)やはり かも かかるほどに、母、賀茂へまうでけるに、この少人を具したりけり。 下向 こうしているうちに、 賀茂神社へ参詣したときに、 ア ~ 幼い子(長女)を連れていった。 家に帰って の後、「さても賀茂にては何ごとを申しつる」と間はれて、「ただ琵琶をよく弾 ところで P 申し上げてきたのか e 思うとおりに弾 かせさせ給ふ)とこそ申しつれ」とぞ、答へける。このことばをあはれみて、 かせてくださいとだけ申し上げた www- 勘当許して、小琵琶返し与へたりければ、よろこび 勘当を許して、 返して与えたので、 h H. て、これより心に入れて道をたしなみ、功を入れた 心を込めて 琵琶の道にうちこみ、長年努力して ること第一なりとぞ。 (古今著聞集) 高い技量に到達したこと当代随一であった。 *嫡女…後の坊門局か。この父も祖父も琵琶の名手であった。 感動して、

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マンサスの法則の問題です。 解いてみましたが、1問目からつまずいています。 1問目から最後まで教えていただきたいです。

1. ソ連 (現: ロシア)の人口は1959年には2億900万人だったか、 割合で指数関数的に増加していくものとして概算された。 その概算式は、 dP =kP dt と表される(k=0.01)。 このとき、 1959年以降の予測人口を求めよ。 1970年の予 測値はいくらか? また人口が1959年の1.5倍になるのはいつか? pt P(t) = Poche: 2.09×108 (10.01) e 0.01+ 1959年 11午後 1970年 10.017" P(1)=2.09×108 (1+0:01)11 0.01×11=0.1 2.3317×108 229 よって 11年後の1970年は約2億3317万人 人口が1959年の1.5倍になるのは 2.09×108× ×1.5=3,135×108人 2.09×108c(1.01)と =3.135×108 1.01t=1,50 2. ニュージーランドの人口は以下の表のように与えられている。 年 人口 1980 3.13 × 106 1985 3.26 × 106 人口増加率 (1) 微分方程式が1. と同じ形式となるとき、 上の表をもちいて係数の値を計算せよ。 3.26 - 3.13 0.13 0.026 1985-1980 5 0.026×100=2,60(%) よって K= 2.60 (2)また、1935年, 1945年, 1953年, 1977年の人口を予測し、以下に与えている実際の データと比較せよ。 さらに、モデルの妥当性について考察せよ。 人口 (モデル) 年 人口 (実際) 1935 1.491 × 106 1945 1.648 × 106 1953 1.923 × 106 1977 3.140 × 106 P(t) = Pocht_1.491×10°e 0.0137 係数の値を計算 1.648 - 1:491' 1945-1935 0.157 10 =0.0157

回答募集中 回答数: 0
1/273