学年

質問の種類

数学 高校生

〜を引いたところの変形の仕方がわかりません。

基本 例題 20 極限の条件から数列の係数決定など ①①①① (1) 数列 {a} (n=1, 2, 3, ...) が lim (3n-1)α=-6 を満たすとき, ■である。 lim nan 8 7118 [類 千葉工大] (2) lim(√2+an+2-√n²-n) =5であるとき、 定数 αの値を求めよ。 /p.34 基本事項 2 基本 18 41 指針 (1)条件 lim (3n-1)a=-6を活かすために,na"=3n-1)lan× n と変形。 →∞ 13n- 数列{37-1 は収束するから,次の極限値の性質が利用できる。 liman=a, limbn=β⇒limanbn=aβ (a,βは定数) 818 818 n18 (2) まず, 左辺の極限をαで表す。 その際の方針は p.38 基本例題18(3) と同様。 (1) nan=(3n-1)anx n であり 3n-1 lim(3n-1)an=-6, →∞ lim n→∞ 3n-1 n = =lim n1α 1 3- n n limnan=lim(3n-1)an×lim よって n→∞ n→∞ n→∞ 3n-1 13 nan を収束することが わかっている数列の積で 表す。 (税込) 極限値の性質を利用。 =(-6)=-2 3 であるから (2) lim(√2+an+2-√n-n) n→∞ =lim n→∞ (n²+an+2)−(n²−n)) =m=mil √√n²+an+2+√√n²-n ((a+1)n+2 mi =lim →∞ =lim- n18 √netan+2+√n²-n (a+1)+- 2 n 12 n ==a+1 2 (税込) 分母分子に √n²+an+2+√n-n を掛け,分子を有理化。 1分母分子をnで割る。 子をnで割る。 'n> 0 であるから n=√ a 2 n 1+ + + 1 n² よって, 条件から a+1 =5 2 Ma=9 したがって {a.l. αの方程式を解く。

未解決 回答数: 1
数学 高校生

(2)の場合分けについて質問です。私は問題を解くときに(i)0<a<2(ii)2≦aのように解答と逆に=をつけて場合分けしたのですが間違いですか。≦は確か、<または=、と言う意味だったと思うので間違っていない気がしちゃってます、、、よろしくお願いします。🙇

46 基本例 85 2次関数の係数決定 [最大値・最小値] (1) 0000 (1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 を定めよ。また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+a2a (0≦x≦2) の最小値が11になるような正の定数 α の値を求めよ。 基本 80 82 重要86 指針 関数を基本形y=a(x-p)'+αに直し, グラフをもとに最大値や最小値を求め (1) (最大値) =4 (2) (最小値)=11 とおいた方程式を解く。 (2)では,軸x=a(a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 5 ■区間の中央の値は 22 で あるから, 軸x=2は区 間 1≦x≦4で中央より 左にある。 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)^+k+8 y k+8-5 よって, 1≦x≦4においては, 右の図から, x=2で最大値k+8 012 をとる。 ゆえに k+8=4 最小 最大値を4とおいて, よって k=-4 kの方程式を解く。 このとき, x=4で最小値-4をとる。 [1] y 軸 (2) y=x2-2ax+α2-2a を変形すると y=(x-a)²-2a [1] 0<a≦2 のとき, x=αで 最小値 -2αをとる。 11 a 2a=11 とすると α=- 2 0 2 これは0<a≦2を満たさない。 [2] 2 <αのとき,x=2で -2a 最小 x AX < 「αは正」に注意。 <0<a≦2のとき, 軸 x=αは区間の内。 →頂点x=αで最小。 の確認を忘れずに。 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11とすると a2-6a-7=0 2<αのとき, 軸x=aは区間の右外。 [2] YA a a²-6a+4 →区間の右端 x=2で最 最小 a (a+1) (a-7)=0 これを解くと a=-1,7 02 x 2 <a を満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 習 (1)2次関数 y=x-x+k+1の-1≦x≦1における最大値が6であるとき、定数 35 kの値を求めよ。 (2) 関数y=-x2+2ax-a-2a-1 (-1≦x≦0) の最大値が0になるような定数 a の値を求めよ。 p.159 EX61

未解決 回答数: 1
数学 高校生

この別解の途中式が知りたいです。 何度しても答えと違う式が出てきてしまって😿😿

172 重要 例題 1082円の共通接線 00000 C:x2+y2=4と円Cz:(x-5)'+y2=1の共通接線の方程式を求めよ。 指針 1つの直線が2つの円に接するとき,この直線を2円の 共通接線という。 共通接線の本数は2円の位置関係によって変わるが,この 問題のように、2円が互いに外部にあるときは,共通内接線 と共通外接線 がそれぞれ2本の計4本がある。 本 共通内線 また、共通接線を求めるときは, 共通外接線 と考えて進めた方がらくなことが多い。 C上の点(x1,y) における接線 xix+yiy=4円 C2 にも接する yA 上の接点の座標を (x1, y1) とすると 2+y^2=4 ...... 解答 に対する 接線の方程式は xx+yiy=4 ...... ② 2 C1 C2 直線 ②が円 C2に接するための条件は,円C2の 中心 (5,0) 直 ②の距離が,円 C2 の半径1 -2 O 2 4 16 -2 に等しいことであるから |5x1−4| =1 ① を代入して整理すると |5x1-4|=2 よって 5x1 -4 = ±2 6 したがって x1 = 2 5 5 6 x=1のとき,①から 64 y₁= ゆえに 25 y=±- 8-5 x₁= 2 のとき,①から 96 y₁= 25 よって = ゆえに、②から求める接線の方程式は 5 6 5 注意 直線 3x±4y=10 は共通内接線(上の図のA, B), 直線x±2√6y=10は共 接線 (上の図のCD) である。 別解] 共通接線の方程式をy=mx+n とすると,これが円 C, C2に接する条 11/8/2/22=4, 1/242/8y=4 すなわち 3x±4y=10,x±2√6y=1 4√6 5x1 0-8-S In それぞれ 15m+nl =2, したがって √m²+(-1)² =1 √m²+(-1)² ||=2ym²+1, 15m+nl=√m²+1 ー中心と直線の距離 よって ||=2|5m+n| ゆえに n=-10m 1 3n=-10 このようにして,一方の文字を消去し, 連立方程式を解く。 た asks [練習 円 Ci:x2+y2=9とC2:x2+(y-2)=4の共通接線の方程式を求めよ。 ③ 108

未解決 回答数: 1
数学 高校生

数学についてです 赤線で引いてある部分がよくわかりません なぜ余りを割るという操作をするのかわからないです 具体例など出してくださると嬉しいです わかる方お願いいたします。

基本 例題 56 剰余の定理利用による余りの問題 (2) 多項式P(x) を x+1で割ると余りが-2, x2-3x+2で割ると余りが-3x+7 であるという。このとき,P(x) を (x+1)(x-1)(x-2) で割った余りを求めよ。 指針 例題 55と同様に、割り算の等式 A=BQ+R を利用する。 基本55 重要 57 3次式で割ったときの余りは2次以下であるから,R=ax2+bx+cとおける。 問題の条件から、このα,b,c の値を決定しようと考える。 別解 前ページの別解のように,文字を減らす方針。 P(x) を (x+1)(x-1)(x-2) で割ったときの余りを,更にx3x+2 すなわち (x-1)(x-2) で割った余りを考 える。 P(x) を (x+1)(x-1)(x-2) で割ったときの商をQ(x), 解答 余りをax2+bx+c とすると,次の等式が成り立つ。 ...... P(x)=(x+1)(x-1)(x-2)Q(x)+ax2+bx+c ここで,P(x) を x+1で割ると余りは−2であるから ② P(-1)=-2 ① 3次式で割った余りは, 2 次以下の多項式または定 数。 また,P(x) を x-3x +2 すなわち (x-1)(x-2) で割った ときの商をQi(x) とすると B=0 を考えて x=-1, 1,2 を代入し, a, b, cの値 を求める手掛かりを見つ ける。 P(x)=(x-1)(x-2)Q1(x)-3x+7 ゆえに P(1)=4 ...... ③, P(2)=1 ...... ④ よって, ①と②~④より a-b+c=-2, a+b+c=4,4a+26+c=1 この連立方程式を解くと a=-2,6=3,c=3 したがって 求める余りは (第2式) - (第1式) から 266 すなわち 6=3 (2) 指 2x2+3x+3 別解 [上の解答の等式① までは同じ ] x2-3x+2=(x-1)(x-2) であるから, (x+1)(x-1)(x-2)Q(x)はx-3x+2で割り切れる。 ゆえに,P(x) をx2-3x+2で割ったときの余りは, ax2+bx+cをx2-3x+2で割ったときの余りと等しい。 P(x) をx2-3x+2で割ると余りは-3x+7であるから ax2+bx+c=a(x2-3x+2)-3x+7 よって,等式①は,次のように表される。 P(x)=(x+1)(x-1)(x-2)Q(x)+α(x2-3x+2)-3x+7 したがって P(-1)=6a+10 P(-1)=-2であるから 6a+10=-2 よって a=-2 求める余りは-2(x2-3x+2)-3x+7=-2x+3x+3 この解法は、下の練習56 を解くときに有効。 ax2+bx+c を x2-3x+2で割ったとき の余りをR(x) とすると 商は αであるから P(x) (水) =(x+1)(x-1)(x-2)Q(x) +α(x2-3x+2)+R(x) =(x2-3x+2) {(x+1)Q(x)+α}+R(x)

未解決 回答数: 1
1/69