学年

質問の種類

数学 高校生

最後の青い()のところで、右に書いてある感じで、係数を比較して答えを出すのは減点されますか? x=0とかπ/2とかを代入して計算するやり方でないとだめですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx) のとき, 等式 y"+2e-1=0 を証明せよ。 |(2) y=ezsinxに 267 00000 に対して,y"=ay+by' となるような定数a,bの値を求めよ。 [(1) 信州大, (2) 駒澤大] 基本 155 指針第2次導関数y” を求めるには,まず導関数y' を求める。 また, 1), (2) の等式はともに 解答 x の恒等式である。 (1) y” を求めて証明したい式の左辺に代入する。 また,er をxで表すには, 等式 elog = pを利用する。 (2) y, y” を求めて与式に代入し、 数値代入法を用いる。 y=2log(1+cosx) であるから (1+cosx). 2sinx y'=2. 1+cosx よって y"=- 1+cost 2{cosx(1+cosx)−sinx(−sinx)} (1+cosxnia 2(1+cosx) (1+cosx) 2 1+cosx ex=1+cosx また, // = log(1+cosx) であるから 2 log M = klogM なお, -1≦cosx≦1と (真数) > 0 から 1+cosx>0 sinx+cos2x=1 [0] elogp=pを利用すると elog(1+cosx)=1+cosx 5章 22 2 高次導関数関数のいろいろな表し方と導関数 ゆえに よって 2e-= 2 2 y 1+cosx e2 y"+2e-=-- 2 + 2=0 1+cosx 1+cosx (2) y=2e*sinx+ecosx=ex(2sinx+cosx) y=2e2(2sinx+cosx)+e(2cosx−sinx) =e2x(3sinx+4cosx) ゆえに ...... ay+by'=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y=ay+by' に ①,②を代入して中 e2x \(e2*)(2sinx+cosx) 1 | +e(2sinx+cosx) (S (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ ③はxの恒等式であるから, x=0 を代入して 4=b 参考 (2) y=ay+by' の ように、未知の関数の導関数 を含む等式を微分方程式と いう(詳しくは p.473 参照)。 ③が恒等式⇒③にx=0, また,x=を代入して 3e=e" (a+26) これを解いて a=-5,6=4 このとき 2 を代入しても成り立つ。 (③の右辺)=ex{(-5+2・4)sinx+4cosx}=(③の左辺) 逆の確認。 したがって a=-5, 6=4 係数を比較して、 a+26=3. よって 4:6. a:-5. (1)y=log(x+√x+1)のとき,等式(x+10y+xy=0 を証明せよ。 156 (2)yee yayby=0を満たすとぎ 定数a,bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大] p.275 EX131~133 airy.

解決済み 回答数: 2
数学 高校生

(2)の解説において n≧2^mとすると、というのはただの仮定ですよね? nが2^mより小さくなる時のことは考えなくていいんですか?

[広島大] 基本100 重要 例題 すべての自然数nに対して, 2" n (1) k=1 k (2) 無限級数1+ (2) 数列 指針▷ (1) 数学的帰納法によって証明する。 1 2 3 1 + + することの証明 +1が成り立つことを証明せよ。 213 + n ・・・・・・・ は発散することを証明せよ。 基本 117, 重要 126 2m n2 とすると k= を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 は0に収束するから,p.201 基本例題 117 のように、199 基本事項 ②② 4章 15 ここで,m→∞のときn→∞となる。 5無限級数 計算すると,等 はさみうちの 比) II) an-br る。 内法を利用 ■れる。 計算 解答 2" (1) ・+1 k=1 k 2 ① とする。 [1] n=1のとき 1/2=1+1/2 k=1k = +1 2 よって,①は成り立つ。 [2]=mmは自然数)のとき、①が成り立つと仮定すると1/3+1 このとき 2m+1 k=1k = = 2m 2m+1 1 + 1 k=1k k=2+1 k 2 (1+1)+2+1+2+2+2 k -nxn 1-x) 2x2+1 2m+1=2m2=2"+2" 2"+2"_miei-9200 =m+ 1 1 1 +1+ + + 2m+1 2m+2 m 2 +1 1> 2m+k 2m+1 2 (k=1,2, 1+1.2mm+1 +1+ > よって, n=m+1のときにも ① は成り立つ。 0 1 2m+2m (= 2m+1 2m-1) [1], [2] から, すべての自然数nについて①は成り立つ。mil I (2) Sm=211 とおく。2" とすると,(1)から 2m m Sn≥ +1 k=1 k k=1 ここで,m→∞のときn→∞ で lim am (+1)=0 よって limSn=8 →∞ n→∞ 00 したがっては発散する。 lan≦bn でliman=∞⇒limbn=∞ (p.174 基本事項 ③ ②) 81U 81U n=1 n Job

未解決 回答数: 1
情報:IT 高校生

マーカー引いたところが分かりません。 まず浮動小数点数とは何か全く知らないので丁寧に教えて下さると嬉しいです。

類題 : 6 例題 6 実数の表現 2 10 進数の 6.75 を,16 ビットの2進数の浮動小数点数(符号部1ビット,指数部5ビット,仮数部 10 ビッ ト)で表すことを考える。 次の文章の空欄に適当な数字を入れよ。OTO (C) 3 2進数の桁の重みは以下のようになる。 ( 整数部 小数点 小数部 8 4 2 1 1/2 1/4 1/8 1/16 よって6.75 は, 6.75=4+2+0.5+ ( ① )のように桁の重みに分解できるので, 6.75 (10)=110.11(g) と2 進数へ変換できる。 次に, 110.11(2) = +1.1011×22となるので, 符号部は(②), 仮数部は(③)となる。 指数部は 2+15=17から( 4 ) となる。 以上より, 求める浮動小数点数は,(⑤)である。 解答 0.25 (2) ③ ④ 10001 1011000000 158921 ⑤ 0 10001 1011000000 (2) ベストフィット n 進数の桁の重みは,次のように求められる。 整数部 小数点 小数部 n³ n² n¹ n° -2 -3 -4 n n n n 解説 指数部は一番小さな指数が0となるように数値を加えて調整する。この例題の場合、指数部は5ビットなので15を加える 例題 7 文字のデジタル化 類題 : 7 2進数00000001001000110100010101100111 2進数 16進数 0 1 右の文字コード表(一部) において,次の問いに答えよ。 0000 2 0 NUL DLE (空白) 3 4 [0001] 1 (1) 「E」に対応する文字コードを16進数で表せ。 SCH DC1 ! 0010 2 STX DC2 |0011| 3 FTX 0120 © A B abc 15 P Q R S 10 7 6 p a r S

未解決 回答数: 1
数学 高校生

私は青い線の方法で解いていくのですが演習問題の様な問題で指数部分がn+1じゃないときはどの様にすればいいのでしょうか?解説お願いします🙇‍♂️

190 第7章 数列 問 125 2 項間の漸化式 (IV) a1=0, an+1=2an+(-1)+1 (n≧1) で定義される数列{az} が ある. an (1)bn=mm とおくとき,bn+1 を bm で表せ. (2)6m を求めよ. (3) an=2"bn =1/2"-2" { ""}}=1/12"-2(-1)*-1} 参考 -(2-1-(-1)-1) (IIの考え方で) ①の両辺を (−1)" +1 でわると, an+1 (-1)+1 2an 6 (3)an を求めよ. しる (-1)+1+1 an+1 an .. (-1)+1= ・=-2・ ・+1 ......③ (-1)" 精講 an+1=pan+gn+1 (p = 1, g≠1) 型の漸化式の解き方には,次の2 通りがあります。 ここで,-1)=b, = bm とおくと, (1) 月+1 an+1 =b+1 だから ③よりbn+1=-26+1 .. bn+1- 3 I. Bats-1/2=-2(0-1) I. 両辺を "+1でわり, 階差数列にもちこむ (124ポイント) Ⅱ. 両辺をgn+1 でわり+1 = rb„+s 型にもちこむ この問題ではIを要求していますから, ます。 == 11/3 だから、 にIIによる解法を示しておき bn- (-2)"- . bx-(1-(-2)-1) 191 ①に, a=2"bn, an+1=2+1bn+1 を 6/13--1/1-20-1 an=(-1)"bm=1/2(2"-1-(−1)"-1} 3 注 この問題に限っては, 両辺に (-1)+1 をかけて (-1)"αn=bn と おいても解けます。 解 答 an+1=2an+(-1)+1 ...... ① (1) ①の両辺を2+1 でわると, \n+1 an+1 an ......② 2" 21-2+(-)-2 an =bm とおくとき, n=bm+1 と表せるので 2" [n+1 *) b=b+(-) (2) n≧2 のとき, bm=b1+ +(-/-) k+1 代入してもよい 121 階差数列 ポイント 漸化式は,おきかえによって, 次の3つのいずれかの 118 n-1 初項 1. 公比 - 12/27 演習問題 1252 =0+ 項数n-1の 6 1+ 等比数列の和 E (1) これは, n=1のときも含む. 吟味を忘れずに 型にもちこめれば一般項が求まる I. 等差 Ⅱ.等比 III. 階差 a1=3, an+1=3an+2" n≧1) で定義される数列 {an がある. an =bm とおくとき, bn+1と6の間に成りたつ関係式を求め よ. (2) bnで表せ. (3) α をnで表せ.

未解決 回答数: 1
1/1000