学年

質問の種類

数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0
数学 高校生

(ア)の問題についてです。 解いてみたのですが答えが合いません。 間違っているところをご指摘して頂きたいです。

● 6 整式の割り算/2つの余りの条件 (ア) 整式f(x) はæ-1で割ると余りが3である.また, f (x) をx'+x+1で割ると余りが 4+5である. このとき,f(x) を3-1で割ったときの余りを求めよ. (関西大 総合情報) (イ) 整式f(x) をx2-4x+3で割ったときの余りは+1であり2-3x+2で割ったときの余 りは3-1である. f(x) を x3-6x2+11x-6で割ったときの余りを求めよ. (秋田大 医) 2つ目の条件の反映させ方 (ア)のように,2つの余りの条件がある場合,それらの割る式を掛け合 わせた式で割ったときの余りを求めることが多い。 (ア)を例にして説明しよう。 一方の余りの条件(割 る式の次数の高い方 いまは2+x+1) の商をA (x) とおくと, f(x)=(x2+x+1)A(x)+4 +5•••アと表せる. いま, f(x) をx-1=(x-1)(x2+x+1)で 割った余りを求めたい. そこで,x 3-1が現れるように, A (x) をæ-1で割ることを考える. A (x) を x-1で割った商をB(x), 余りをとして, A(x)=(x-1)B(x)+rとおき,アに代入する.この式 に対して,もう一方の余りの条件を反映させてを求めれば,-1で割った余りが分かる. 解答量 (ア) f(x)=(x+x+1)A(x)+4+5 A(x)=(x-1)B(x)+r と表せるから, f (x)=(z+x+1){(x-1)B(x)+r}+4m+5 =(x-1)B(x)+r(x2+x+1)+4 +5 f(x) をx-1で割ると余りが3であるから, 剰余の定理により, f (1)=3 ①にx=1を代入して, f(1)=3r+9 .. したがって, ①により, 求める余りは, 3r+9=3 r=-2 ・① ←前文参照. f(x) を-1で割った余りは2 次以下になるが, ①により, f(x) をx-1で割った余りが r(x'+x+1)+4+5であるこ とが分かる.あとはを求めれ ばよい. -2(x2+x+1)+4x+5=-2x2+2x+3 (イ)-4x+3=(x-1)(x-3), x2-3x+2=(x-1)(x-2), x³−6x²+11x−6=(x−1)(x²-5x+6)=(x-1)(x-2)(x-3) であることに注意する. f(x) をx2-4x+3で割った余りがx+1である. 商を A(x) とおくと, f(x)=(x-1)(x-3)A(x)+x+1 x-6x2+11c-6にx=1を代入 すると0になるから, 因数定理に よりæ-1で割り切れる (次章の ◇4 を参照). ① ここで,A(x)=(x-2)B(x)+rと表せ,これを①に代入して A (x) をx-2で割った商が 2 B(x), 余りが (1次式で割った から,余りは定数). f(x)=(x-1)(x-3){(x-2)B(x)+r}+x+1 一方,f(x) をx2-3x+2で割った余りが3-1であるから, f(x)=(x-1)(x-2) Q(x)+3x-1. と表せる.上式にx=2を代入して,f(2)=5. ②にx=2を代入して, .. -r+3=5 .. r=-2 f(2) =-r+3 ②から,f(x)=(x-1)(x-2) (x-3)(x)-2(x-1)(x-3)+x+1 を求めるには,②でB(x)が消 えてrが残るx=2に着目. m したがって, 求める余りは,=-2x2+9x-5 wwwwwwwwwwwww

解決済み 回答数: 1
数学 高校生

青チャートⅡ例題194で質問があります。 ②の式では 2(x -a)Q(x)+(x−a)^2 Q'(x)+p てなってるんですけど 右の黄色いマーカーで引いたとこによると n(ax+b)^n−1(ax+b)'の(ax+b)'に該当するところが見つかりません。 この... 続きを読む

重要 例題34 (x-α)” で割ったときの余り(微分利用) xについての整式f(x) を (x-α)で割ったときの余りを, a, f(a), f'(a) を用 いて表せ。 指針整式の割り算の問題では,次の等式を利用する。 A = B XQ+ R 割られる式割る式余り 解答 f(x) を (x-α) 割ったときの商をQ(x) とし, 余りをpx+q とすると,次の等式が成り立つ。 ! 2次式(x-α)で割ったときの余りは1次式または定数であるから f(x)=(x-a)^Q(x)+px+q [Q(x) は, b, qは定数] 平 が成り立つ。この両辺をxで微分して、商Q(x) が関係する部分の式が =0 となるよう な値を代入すると, 余りが求められる。 f(x)=(x-a)^Q(x)+px+q... ① 1 両辺をxで微分すると \m f'(x)={(x—a)²}'Q(x)+(x− a)²Q'(x) + p (5)-(8)=2(x-a)Q(x)+(x-a)'Q'(x)+p ①,②の両辺にx=a を代入すると, それぞれ f(a)=pa+α ③, f'(a)=p ...... ...... p=f'(a) ...... 4 ② ④ から よって③から したがって、求める余りは xf' (a)+f(a)-af'(a) 人は p.303 参考事項 重要 55 [早稲田大〕 I◄{f(x) g(x)}' q=f(a)-pa=f(a)-af'(a)m) bes-8-8 余りの次数は、割る式の次 数より低い。 1800 = f'(x)g(x)+f(x)g'(x) {(ax+b)"} =n(ax+b)" (ax+b) (p.303 参照。) P1+9の人 PC9を求めてる 305 6章 34 微分係数と導関数 この部分どこ いった

未解決 回答数: 0
数学 高校生

55.1 点線の下線部、x^n-1=(x-1)...のところがあまりピンときません。なぜこう言えるのでしょうか??

(x-2)で を考える。 二余りは、 1 または定数 , 2 b,cの を見つけな 1式)から ち6=3 下の練習 5 有効である。 を 伺ったときの すると、 ら (x-2)(x) +2)+R(土) 2 +al+RU を代入 がらで ったときの余り 00000 2以上の自然数とするとき, x-1 を (x-1)^2で割ったときの余りを求 [学習院大 ] めよ。 3x100+ 2x7 +1をx2 +1で割ったときの余りを求めよ。 ( 2 ) 指針 .88~90 でも学習したように, 実際に割り算して余りを求めるのは非現実的である。 ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意 B = 0 を考える がポイント。 (1) (2) ともに割る式は2次式であるから, 余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが、それだけでは足りない。 そこで,次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 a"-6"=(a-b)(a-1+α 2b+α"-362+ +ab+b^-1) (2) x2+1=0の解はx=± x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b | 解 (1) 二項定理の利用。 とすると 次の等式が成り立つ。 x-1={(x-1)+1}"-1 x-1=(x-1)'Q(x)+ax+b..... ① 両辺にx=1 を代入すると ① に代入して x"-1=(x-1)'Q(x)+ax-a 0=a+b すなわち b = -a =(x-1){(x-1)Q(x)+α} ここで, x”−1=(x-1)(x"-1+x"-2+ ······ +1) であるから x-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α 個 b=-n b=-αであるから a=n よって ゆえに, 求める余りは nx-n (2) 3x100+ 2x97 +1 を x²+1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 両辺にx=i を代入すると 3i100+2i07+1=ai+b j100= (i2)50=(−1)=1, 7°= (j') i=(-1) i=i であるから 3・1+2i+1=ai+b 4+2i=b+ai すなわち α, b は実数であるから したがって 求める余りは 基本 53,54 a=2, b=4 2x+4 練習 (1) 955 (2) x2+x+1をx+4で割ったときの余りを求めよ。 Ch(x-1)"+..+n C2(x-1) 2 + Ci(x-1)+1−1 =(x-1)^{(x-1)^2+...+nC2} nx-n ゆえに,余りは nx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 xiは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから, 余りの係数も当 然実数である。 2以上の自然数とするとき, x を (x-2)で割ったときの余りを求めよ。 p.94 EX39 91 2章 10 剰余の定理と因数定理

解決済み 回答数: 1
数学 高校生

マーカーひいてるとこなんでだか分からないです教えてください!

問 8 整式の割り算 (2) (1) 整式P(x) を (x+2)^ で割ると余りがx+3であり, x+4 で割ると余 りが -3 である.P(z) を(x+2)(x+4) で割ったときの余りを求めよ. (佐賀大) (-) (千葉大) (2) 整式x+ax+ax+bx-6が整式 ²-2x+1で割り切れるとき α, の値を求めよ. (1) P(x) を3次式で割るのですか ら、求める余りは2次以下の整式で → 精講 す。 (2) 整式 P(x) が2次式 (x-1)2で割り切れる ということは, P(x) 1次式 (x-1) で割り切れ, そのときの商も(x-1) で割り切れるということ A です. <解答> ただし、Rは0からより数の低い (1) P(x) を (x+2)(x+4) で割ったときの商をQ(x), 余りを ax²+bx+cと おくと ■余りは2次以下の整式 ax²+bx+c=a(x+2)2+x+3 解法のプロセス (1)3次式で割ったときの余り は、2次以下の整式 P(z)=(x+2)(x+4)Q(z) +ax+bx+c P(z) を (x+2)2で割った余りx+3 は, ax²+bx+c を (x+2) で割った 余りでもあるから」 余りをax+bx+c とおく (2) -1で2回割る ... P(x)=(x+2)(x+4)Q(x)+α(x+2)2+x+3 P(x) を x+4で割った余りは-3であるから, 剰余定理より P(-4)=-3 .. α(−2)²-4+3=-3 P(1)=0 .. 2a+6-5=0 ∴. HON このとき, よって、求める余りは1/12(x+2)+1+3=1/12/22 27x²-x+1=(x)0 (2) P(x)=x^+ax+ax+bx-6 とおく. P(x)がx²-2x+1=(x-1)2で割 SARI P(x)=x+ax+ax²+ (5-2a)x-6 1 a=- 2 り切れるためには, P(x)がx-1 で割り切れることが必要であり, (火 MO b=5-2a =@{=13 (8) !! P(x) は (x-1)を因数にもつ

解決済み 回答数: 1
1/13