学年

質問の種類

数学 高校生

31と32の解き方の違いを教えて下さい🙇‍♀️

基本20 重 62 基本 例題31 2つの無限等比級数の和 ①① 無限級数 (1-1/2)+(1/2-2/21)+(1/3/3-2/17)+ +...... の和を求めよ。 p.54 基本事項 CHART & SOLUTION 無限級数 まず部分和 Sm nom この数列の各項は()でくくられた部分である。 部分和 Sm は有限であるから,頃の順序 を変えて和を求めてよい。 [注意] 無限の場合は、無条件で項の順序を変えてはいけない (重要例題 32 参照)。 別解 無限級数 Σan, 20m がともに収束するとき n=1 n=1 (a+b)=an+26m が成り立つことを利用。 n=1 n=1 n=1 解答 初項から第n項までの部分和を Sn とすると Sn=(1+1/+1/28++g/1)-(12/2+2/23+ ......+ 1-(1/1)/1-(1/2)"} +...+ 2n 2/2/2) Sは有限個の和であ から、左のように 変えて計算しても 3 1 1 1- 1 3 20 3 lim Sn 1-2 n→∞ 別解 n=1 00 S=1221-1-1/2 であるから,求める和は (1-1/2)+(1/3-2/2)+(3/2-2/23)+ 00 n=1 1 3n-1 2n 1 は初項 1. 公比 1/3の無限等比級数であり、 3n- 2/1/17は初項 1/12公比 1/12 の無限等比級数である。 <1 公について/12/1 であるから,これらの無 限級数はともに収束して, それぞれの和は -0+0= ( n→∞のとき 0, [inf.] 無限等比級数の収束 α=0 または |r|<] このときは 1- ◆収束を確認する 8 1 1 3 00 = 2 3n-1 n=13 = 1 2' 1 n=1 2n =1 3 1- 2 00 よって 1 3 2n-1 n=1 2" -1= PRACTICE 31° 次の無限級数の和を求めよ。 (1)(1+1/+1/+1)+(1/+1)+ 23 +... 32 33 2 (2) 33-2, 3-2 3-2

回答募集中 回答数: 0
数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
1/361