学年

質問の種類

数学 高校生

Focus Gold 数学Ⅱ 例題105 黄色マーカー部、Y=0のとき、グラフのどの条件のことをさしていますか?

の交点Pは,どのような図形を描くか. 3章 図形と方程式 例題 105 2直線の交点の軌跡 ( 1 ) mが実数値をとって変化するとき, 2直線 y=mx+8...... ① x+my=6..... ② (別解Ⅰ) ① ② ②よ 6-8m 6m+8 考え方 ①②の交点Pの座標を求めると, x=- 2 y 1+m² 1+m² となり、ここか した 解答 去してxyの関係式を導くこともできるが, 計算がやや大変ではある。 ここでは、交点をP(X, Y)として, 1, ②より [Y=mX +8 LX+mY= 6 この2式よりを消去して,XとYの関係式を導くことを考える 交点の座標をP(X, Y) とすると, Y=mX +8 ...... ①、 X+mY=6...... ②、 6-X (i) Y0 のとき,②より, m= ③ Y ③①'に代入して, Y = - 6-X ・X+8 より Y こうする 分母にくる Y=0 と Y'=6X-X2+8Y 場合分けを したがって, (X-3)2+(Y-4)²=25 ④より、た ただし, Y = 0 となる④上の点(0, 0) (60)は除く。 X+m0=6 (i) Y = 0 のとき,②より, X=(別解 2) wwwwww つまり、 X=6 ①'に代入して, 0=m・6+8より,m=-- 4 3 4 3 したがって, m=-- のとき 2直線の交点は m=- P (6,0)となる. に代入し よって, (i), (ii)より交点Pの描く図形は, 中心 (34) 半径50円 ただし、原点を除く. てみるとよい (道)より、( た点(6.0)) 描く図形に Focus 注 2直線の交点の軌跡を求めるには, 「媒介変数の消去」か 「図形の性質を調べる」 次ページの (別解1) では,計算が大変になるが, m (媒介変数) の消去の練習にもなるので,交点P (x, y) の座標より,x,yの関 係式を導いている,また (別解2)では,①の傾きは②の傾 きは 1で、m=-1 より ①と②は垂直に交わる m m かるので,求める交点Pの軌跡は, AB を直径とする円周上にあると考えら また、①,②はそれぞれ定点A(0, 8), B(6, 0) を通ることがわ 練習 105 *** (6-

解決済み 回答数: 1
数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
1/1000