学年

質問の種類

数学 高校生

マーカーで線を引いてあるところはどのように式変形をしていますか??

26 = √√√3. 12 ( 29-√si 9 -3+ √3i 29 + 29 9 (3) 正の整数mに対して, .6m 26m -a a = (-27 √√3.6( そこで,26mの実部 2 千葉大学・理系 複素数 (1998~2020) 問題 複素数平面上で複素数 0.3, Js+iを表す点をそれぞれA Bo, Bとする。 の整数nに対して, 点 An+1 は線分ABの中点とし, 点B7+1は直線ABに関して B-1 の反対側にあり,三角形A+BB+】 が三角形A, BoB, と相似になるものとする 点An (n=1,2,3, ...) が表す複素数をznとする。 (1) 複素数 z3 を求めよ。 (2) 複素数26 を求めよ。 (3)正の整数 m に対して,複素数 26m の実部と虚部をそれぞれ求めよ。 解答例 (1) 複素数平面上で A1(0), Bo(√3), Bi(V+i)とし 点A2は線分ABの中点, 点 B2 は直線AB」に関して点 Bo の反対側で, △A 2 B B 2 が A B B, と相似になる。 <B2A2B, で, A1A2: A2A3=1:b1=1:- √√3 2 √3 = 6 YA 1 A, Para から,A2AsはA,A2をこだけ回転し、大きさを倍 OA₁ したものになる。 6 ここで, α=- 1/(cosisin)=1/2(+1/2 = 1/2 + とおくと、 √32 6 23-22=α(22-21), 23=22+α (22-21) √√3 さらに, 0,2= + =√3αであることに注意すると, 2 2 23 = √3a + √3a² = √3a (1+a) = √3 (1+ √3)(3+ √3) 2 6 2 3 3 (2)(1)と同様に考えると, 一般的に,Zn+2-Znil = α (Zn+1-Zn)となり, Zn+1-Zn=(2-2)^1=(√3a-0)a"-1=√3a" すると, n≧2において, α≠1から, n-1 2n = 21+√3a=0+ √3a (a"-1)√3.a" -a k=1 6 α-1 = α-1 ....(*) (*)から,26=vaq となり,α = ((cos+isinx)= -a=! a6-0 また, α-1= 1 α-1 √3 Si 27-(+√3)=29 √3; 12 + 6 6 -1 == 2 6 + 追iから、 6 _1なので、 27 -112- Re(26m) 12 Im(26m) ======== 12 「コメント 図形絡みの複素数と せずに数値計算をしま まず一般的に解く方法

解決済み 回答数: 1
物理 高校生

屈折率の変化は位相の変化に影響するけど、屈折では変化しないってどういうことですか?🤔

1.30-0.50 0.80 1.00-0.50 0.50-1.6 なお,各式を利用して数値計算すると, "=4.9m/s, ex=0.80, en=0.50 と求めることができる。 問5 順次、 検討する。 5 の答 ⑥ ①:光の速さはどんな媒質中よりも真空中が一番大きい(連 い)。 よって、 ①は正しい。 ②: 凸レンズの焦点距離を凸レンズと物体の距離をと し、実像の位置を作図する。 物体 焦点 a-f 凸レンズ 焦点 光軸・ 実像 この図より, a-ff, すなわち α>2f のとき, 物体より実 像の方が小さい。 よって, ②は誤っている。 ③:光の位相は反射で変化する場合があるが, 屈折で変化する ことはない。 よって, ③は正しい。 ④:光は,電場と磁場が進行方向に対して垂直に振動する波な ので横波である。 横波なので、一つの方向にだけ振動する偏光を つくることができる。 よって、④は正しい。 ⑤:光の分散は, 波長によって屈折率がわずかに異なることに よって生じる現象である。 雨上がりに虹が見えるのは、空中の水 滴によって光が屈折するときに分散が起こるからである。 よっ て, ⑤は正しい。 ⑥ : 可視光線は波長が短い順に, 紫色光, 青色光, ..., 橙色光, 赤色光となっている。 よって, ⑥は正しい。 2問 円運動 6 の答② 口

解決済み 回答数: 1
物理 高校生

高3物理です。③からの解き方を教えてください。

その2:楕円軌道においてA点での衛星の速さをVA, 地球 (焦点)からの距 離をra,同様にB点での衛星の速さと距離をVB, YB とおく。 A点とB点において力学的エネルギーは保存されている。つまり, 無限遠 1 Mm 1 / mv ² + (-6 mm) = = mv² + (-6 Mm) -G が成り立つ。また, ケプラーの第2法則 (面積速度一定の法則) から 1 A その3: 図のように地球を回る衛星 A,Bの軌道の中心を0, 0', 半長軸の長さ をa,b, 公転周期をT, To とするとケプラーの第3法則から以下の関係がある。 || でん 1 TAVA = 2 TBVB が成り立つ。 図のように楕円軌道からはみ出していてとても成り立たないように見えるが実際の速さは 10km/s の桁で軌道の大きさは 102~105km のオーダーなので十分な精度のある近似になっている。 地球 'B Tro 「B The Moon kR 地球 A ave b ・QR- 1.B B "B B Bro B 【達成すべき目標】 ① 第1宇宙速度vo をg, R で表し数値計算せよ。 ②静止衛星軌道の半径rをg, R, Te,πで表し数値計算せよ。 また, それが地球の半径Rの何倍になるかkRのkを 求めよ。 ただしは地球の自転周期である。以下の問題ではここで求めた kRを使うと式が簡単になる。こ 6.6R こで,重力加速度の大きさは 9.8m/s2, 地球の半径を6.4×10m とする。 R ③A点での速さを av (第1宇宙速度のα倍) にしたとき, 静止衛星はB点を通る楕円軌道に入ったとする。 αの値を求めよ。 ④楕円軌道上の衛星がB点に達したときの速さはvになっている。 βの値を求めよ。 AB ⑤ケプラーの法則を使って、 静止衛星がA点からB点に達するまでの時間 taBをg, R, πで表し数値計算せよ。 これにより, 日本が楕円軌道の長軸上に達する tag 前に衛星を加速させればよい。 ⑥目標の静止衛星の円軌道に入るためにB点での速さを yue に加速する必要がある。 yの値を求めよ。 ⑦ そもそもなぜ静止衛星軌道が存在するのか。 地球の自転と同じ周期Tで回ればよい。 この疑問にケプラー の法則を使って反論せよ。

回答募集中 回答数: 0
物理 高校生

【途中計算】どうやっても答えが合いません。何が違うんですか?丸しちゃってるのは間違えて丸つけちゃいました。どなたか教えてください!

165 きさをv[m/s] とすると, 力学的エネル ギー保存の法則より, 無限遠点を万有引力による位置エネル ギーの基準点として, ① ② より G, M を消去して、 ひ= +(-G Mm) = 1/2 mx 0 + (-G_Mm R+3RT mv² + 2² ≒9.7×10°[m/s] 2 (2) 無限遠点まで到達すれば、地球の重力は及ばなくなる。無 限遠点での万有引力による位置エネルギーはOLだから, 求 める初速度の大きさを〔m/s〕 とすると, (1) と同様に考えて, 3gR 2 /3×9.8 x (6.4×10°) 1/2 mv ² + ( - G Mm) = 1/2 m² ²) = 1/2m x 0² +0 R ③より,G, M を消去して び =√2gR=√2×9.8 x (6.4×10) = √22 ×7²×82 × 104 = 1.12×10=1.1×10^[m/s] ゆえに, v2 (3) 2GM 72 1^2 解説 (1) ケプラーの第2法則(面積速度一定の法則)より, 一元 r1 1/1/nor = 7/1/2 12 (2) 惑星の質量をmとすると, 力学的エネルギー保存の法則 より 無限遠点を万有引力による位置エネルギーの基準点と して, 1/2 mv ² + ( - G 2 ひ (2) vi²+2GM = 202 ゆえに, v2 Mm/ 12 u2+2GM (11) (p<0は不適) 2 (3) (1)2)の結果より, v2 を消去すると, -(-GMm) 1 = 2 mv₂² + -(-6 ・G 11 20₁= √0₁² + 2GM ( + 2 = 1 ) 12 12 ri (ritr₂) mv² + 2 =一定 165) セ (1) 面積 星を結ぶ 向と惑星 角が0の場 (面積 0=90° ri (面積 THE V₁ = 12 両辺2 整理す (r₁² - r₂²) 1₁ 1₂ = (n+1₂) よって

解決済み 回答数: 1
1/4