学年

質問の種類

数学 高校生

緑色で丸で囲っているところについて。なぜ1≦3分の4aとなっているのにx=3分の4aはダメなんですか?

355 64 基本 例題 223 係数に文字を含む3次関数の最大・最小 00000 すなわち [2] YA [2] [2] は区間に極大値をと a³ α を正の定数とする。 3次関数f(x)=x-2ax2+αx0≦x≦1 における最大 立命館大 ] 基本 219 重要 224 4 るxの値を含み, 極大値 が最大値となる場合。 で最大となり 0 a 1 a 3 値 M (α) を求めよ。 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう ya になる (原点を通る)。 ここで,x= =/1/3以外にf(x)=f(10/28) ( 0 よって、1/3 α (1/3<α) が区間 0≦x≦1に含まれるかどうか a a 3 で場合分けを行う。 満たすx (これをαとする) があることに注意が必要。 <a a f(x)はx=/10/ M(a)(0) 4 [3] 0< <1/3a<1 すなわち 0<a<212 のとき, f(x)はx=1で最大となり M(a)=f(1) 以上から f'(x)=3x²-4ax+α2=(3x-a)(x-a) 解答 f'(x)=0とすると x= a 3. a まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 a>0であるから, f(x) の増減表は次のようになる。 <a>0 から a x a ... 3 0<<a f'(x) + 0 0 +1 (0)\-(E)\ 0<a<12/13<a のとき [3] 最大! a2-2a+1 a jal [3] は区間に極大値をと るxの値を含むが、 区間 この右端の方が極大値より も大きな値をとり, 区間 の右端で最大となる場合。 10 a a 4 3 M(α)=f(1)=α-2a+1 24≦3のとき M(a)= このとき 大阪 <f(1)=13-2a・12+α2.1 =a²-2a+1 f(x) 極大 (0) ここで,f(x)=x(x2-2ax+α²)=x(x-α)からもう (*) 曲線y=f(x) と直線 x= (3)=(-a)=7a³ 4 a³, f(a)=0 OL-13+TS =1/3以外にf(x) = 27 を満たすxの値を求めると, 3次関数の対称性の利用 目 4 検討 p.344 の参考事項で紹介した性質, 3 を用いて,f(x)=2742 を満たすx= 1/3以外のx の値を調べることもできる。 2つの極値をとる点を結ぶ線分の中点(つまり,変曲点) の y=f(x) x 座標は x=- -2a 2 3.1 3 点において接するから, f(x)/(x) 4 f(x)= =270から (1 x³-2ax²+a²x-7a³=0 4 で割り切れる。このこと を利用して因数分解する とよい。 S ゆえに (x-1)(x-1/4)-10-19 1102a a a 15 3 x= であるから X= 15 4 1 0 よって, f(x) 0≦x≦1における最大値 M (α) は,次のよ うになる。 01 9 a 4 3 4 a [1] 1<1/3 すなわち 4>3のとき 1 0 3 f(x) はx=1で最大となり M(a)=f(1) <指針_ a2-2a+1 -最大 ★ の方針。 [1] は区間に極値をとる xの値を含まず 区間の 右端で最大となる場合。 0 a a x 3 a 3 2 で, a+ から、 3 11/24)となる。 なお, p.344 で紹介した性質を用いる方法は,検算で使う程度 としておきたい。 で 0.0 6章 6 最大値・最小値、方程式・不等式 ことしないよ 練習 x3 0223 は正の定数とする。 関数f(x)=- x²+ 3 ax²- ピー2ax+αの区間 0≦x≦2におけ 3 p.368 EX142 る最小値 m (a) を求めよ。

未解決 回答数: 1
数学 高校生

(3)の問題が答えを見ても、重なる点がどこになるかなど、イメージがつかずテ、トが解けないです💦教えてください🙇‍♀️よろしくお願いします

[数標準プラン100 (共通テスト対策) 問題92] (1)1辺の長さが2の正四面体 OPQR を考える。 辺OPの中点をMとし, OP = p, OQ=g, OR = とする。 R アイ アイ (i) MR= p+r, MQ= +gであり, ウ p.g=g.v=v.p= H である。 Q' (ii) MR.MQ- = オ であるから, ∠RMQ = α とすると, P cos α = である。 キ (2) 1辺の長さが2の正四角錐 O'ABCD を考える。 ただし, 正四角錐 O'ABCD の辺の長さはすべて等しいも 「のとする。 辺O'Aの中点をNとし, O'A=a, O'B=b, 0℃=cとする。 B A クケ サ (i) NB: = a+b, ND= -a-b+ccy), a c= ス である。 コ シ タチ (ii) NB.ND=センであるから,∠BND =β とすると, cosβ= である。 ツ (3)(1) 正四面体 OPQR と (2) の正四角錐 O'ABCD を 頂点 O, P, Q がそれぞれ 頂点 0′, A,B に重なるように正三角形の面を重ね合わせた立体を考える。 ただし, 点Rと点Cが,その正三角形の面に関して反対側にあるものとする。 このとき, ∠RMQ + ∠BND=テである。 したがって,この立体はトであることがわかる。 テの解答群 ④ π ① -62-3 % ② π 43-4 π ⑥ 35-6 の解答群 ⑩面体 ①八面体 ②七面体 ③六面体 ③ 2 πC ④ 五面体

回答募集中 回答数: 0
化学 高校生

酢酸エチルの合成実験についてわからない点があるのですが、炭酸水素ナトリウムを、加えた後2層に分離したのはエタノールとエーテルが油層で酢酸ナトリウムが水槽でしょうか?また、その後塩化カルシウムを入れて2層に分離したのは何が起こっているのか分からないです。教えて頂きたいです。よ... 続きを読む

還流冷却器 3-2 次の方法で,氷酢酸とエタノールから酢酸エチルの合成を行った。 次頁の問1~7に答えよ ただし, 原子量はH=1.0, C=12,0=16 とする。 図Aの装置を組み立て, 内容積 500mLのフラスコに氷酢酸120g, 無水エタノー ノール100g) 濃硫酸 30g を入れ, 沸騰石を加えて沸騰水浴中で30分間加熱した。 加熱を止め室温まで冷や したのち,ろうとを用いて反応液を蒸留フラスコに移し, あらたに沸騰石を加えた。 図Bのよ (1) うに装置を組み立てて蒸留を行い, 受器に得られた 留出液に蒸留水 20mLを加え,よく振り 加え中和した。 その液を分液漏斗に移し,静かに放置すると2二層に分離した。 水層を捨て、 まぜながら青色リトマス紙が赤変しなくなるまで, 飽和炭酸水素ナトリウム水溶液を少しずつ 酢酸エチルを含む層に,氷水で冷やした 50% 塩化カルシウム水溶液20mL を加えてよく振 りまぜたのち、静かに放置すると二層に分離した。 酢酸エチルを含む層を三角フラスコにとり 粒状塩化カルシウムで水分を除いたのち, 再び蒸留を行って沸点 78℃の純粋な酢酸エチル 132gを得た。リトマス紙「赤=酸性 気体を液体に 戻すため 青青=塩基性 図 A HID 温度計 ・気体(沸点を はかる) 枝付きフラスコ リービッヒ冷却器 ・沸騰石 水浴 ガスバーナー 図 B 水 スタンド 脱脂綿 一角フラスコ 汗に たしたもの み入る. 問 問 問

解決済み 回答数: 1
数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
化学 高校生

Dについて質問です。直鎖なのはわかるのですが両端につくというようなケースは考えなくて良いのでしょうか。教えて頂きたいです。よろしくお願いいたします。

-3 【問題】 グリセリンのエステル 4/36/7 の文を読んで,以下の問1~4に答えよ。 ただし, 原子量はH=1.0,C=12,016と なお, 構造式は次の例にならって記せ。 0 || C4H9-C-O-CH2-CH-C-C3H5 CH3 カルボン酸が生成する。 9.2gのアルコールCを完全燃焼させると, 13.2gの二酸化炭素と C, H, OからできているエステルAとBを加水分解すると, それぞれからアルコールCと 7.2gの水が生成する。 また, アルコールCを酢酸エステルEにすると, Eの分子量はCの分 子量に比べて126増える。 この方 Dは直鎖の飽和脂肪酸である。 カルボン酸D の元素組成(質量パーセント)は,Cが76.0% Hが 12.7% である。 8.90gのエステルAを加水分解すると,8.52gのカルボン酸 D が得られる。得られたカル ボン酸は 3.00×10 molの水酸化ナトリウムと反応してナトリウム塩 F を生成する。また、 3.58gのエステルBを加水分解すると2.84gのカルボン酸Dが得られる。 問1 アルコールCの構造式と化合物名を記せ。 また, エステルEの構造式を記せ。 問2 エステルAとBの構造式を記せ。 可能な構造式が複数ある場合は,そのすべてを記せ。 問3 Aのようなエステル,F のようなナトリウム塩は,それぞれ一般に何とよばれているか。 問4 エステルAの融点 密度として最も適当と考えられる値を次の中から選んで記号で答 えよ。 〔融点〕 (a) 100℃より低い (b)100℃から200℃の間 〔密度〕(d)1g/cmより小さい (e)1g/cm から 1.5g/cmの間 (f)約2g/cm3 (c)200℃より高い 4-4 次の よい。 動 造は 応 す ら ま が反発し

解決済み 回答数: 1
数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

この問題についてで、写真のことが成り立つので<BCM=<BCNとしてよいでしょうか?回答よろしくお願いします。

戦略 例題 座標平面の設定 ★★☆☆ AB=ACである二等辺三角形ABC を考える。辺 AB の中点を M とし, 辺 AB を延長した直線上に点Nを, AN:NB=2:1 となるようにとる。 このとき,∠BCM = ∠BCN となることを示せ。ただし,点Nは辺 AB 上にはないものとする。 AR (京都大) « Re Action 図形の証明問題は,文字が少なくなるように座標軸を決定せよ IB 例題 95 思考プロセス ・△ABC は AB AC の二等辺三角形 YA |対称性の利用 O ADJ A 対称軸をy軸に設定 ∠BCM と ∠BCN を考える BCをx軸上に設定して、 とすると、 M B C 0 x 関問 戦略 設定 2 直線 NC と MC の傾きを考える AN 95 解 直線 BC をx軸, 辺BCの中点を 原点にとる。 △ABC は AB AC であるから, A(0, 2a),B(-26,0), C(260) (a>0, 6 > 0) としても 一般性を失わない。 YA 34A 2a (8) M A(0, 4), B(-6, 0) のよう At に設定してもよいが,後で -2b BO (2) ① Mは線分ABの中点であり, N は 線分ABを2:1 に外分する点であ NO DA るから M(-b, a), N(-4b, -2a) 26 CABの中点Mを考えると M(-) 分数になってしまうか ら,Mの座標が分数とな らないようにした。 このとき,NC の傾きは m1 = 26-(-4) 36 0+(-2a) a A = 0-a a MCの傾き m2 は m2= 26-(-b) 3b よって, 2直線 NC と MCはx軸に関して対称であるから <BCM = ∠BCN 頭を (別解〕(座標を用いない証明) BM=α とおくと AB = 24, AN = 4a, AC=2a <BAC=0 とおくと, △AMCにおいて, 余弦定理により CM² = a² + (2a)2-2. a. 2acos = 5a² - 4a² cos BA 逆向きに考える ∠BCM = ∠BCN を示す。 CM:CN = MB:BN が示されればよい。 MB:BN=1:2より, CM:CN = 1:2 を示 したい。 また,△ANC において,余弦定理により11/07 CN2 = (4a)²+(2a)2-2.4a 2acos 08 A =20α²-16acost M FO 大 よって、CM:CN=1:4 より <BCM = ∠BCN CM:CN=1:28- したがって、角の二等分線と比の定理の逆により B C ② ① 練習 △OCD の外側にOCを1辺とする正方形 OABC と, ODを1辺とする正方形 このとき、 AD ⊥ CF であることを証明せよ。 (茨城大) 303 p.315 問題1

解決済み 回答数: 1
1/76