学年

質問の種類

数学 高校生

解説お願いします。 黄色マーカー以前までは理解出来たのですが、黄色マーカーから紫マーカーへの流れがよく分からないです。 教えていただけると嬉しいです。 よろしくお願いします。

第1講 確率と漸化式 1 図のように、正三角形を9つの部屋に辺で区切り,部屋 P, Q を定める。 1つの球が部屋Pを出発し, 1秒ごとに,そのままそ の部屋にとどまることなく, 辺を共有する隣の部屋に等確率で 移動する. 球がn 秒後に部屋 Q にある確率を求めよ. P Q 《12 東大理科文科》 【著】3(金) 11- (nが偶数のとき) (nが奇数のとき) 【解説】 右図の様に P と Q 以外の部屋を定める. 最初に球はPの部屋にあることより, nが奇数のときには球はP,Q, R以外の部屋にあり, nが偶数のときには球はP,Q,R のどこかの部屋 にある. 以下を偶数とする. m+2秒後にQ の部屋に球があるのは 1 (I) m秒後にPにあり,確率 3 でAに移動して、確率 1/12 で Q に移動する. 1 (II) m秒後にQにあり,確率 でAに移動して、確率 1/12 でQに移動する。 3 1 (III) m秒後にQにあり,確率 でBに移動して,確率1でQ に移動する. 3 1 A R Q B (IV) m秒後にQにあり,確率 でCに移動して、確率 1/2でQに移動する。 3 (V) m秒後にRにあり、確率 1/3でCに移動して、確率 1/1 -で Q に移動する. の5つの場合だけ考えればよいので, n秒後にP,Q,R にある確率をそれぞれ Pn, Qn, Rn とすると, Qmtz=Pmx/1/31/1/2+Qmx1/2×1/28+Qmx/3×1+Q×1/2×1/2+Rmx/1/3×1/2 6 Qmtz=2/12 (Pa+Rm)+/Qm 2 3 が成り立つ。ここでPm+Qm+Rm=1よりPm+Rm=1-Qm を代入すると Qm+2=1/03(1-Qm)+/30m 6 ⇔ Qm+2= Qm + 2 == 1 | Qm + 1/14 2 6 ⇔ Qm Qm+2- + 2 − 1 = 1 ½ (Qm −1 ) ---① dm - 3 2 となり,最初球がPにあることよりQ = 0 と定めることができるので,Q=0と① より Q2n = {1-(2)"}

解決済み 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
1/1000