学年

質問の種類

数学 高校生

高二数学 波線を引いている部分のabはどう計算して3abからabになったんですか?

B1 式と証明・高次方程式 (20点) 多項式P(x)=x+(k-2)x2+(3-2k)x-6 がある。 ただし, kは実数の定数とする。 (1) P(2) の値を求めよ。 また, P (x)を因数分解せよ。 (2) 方程式 P(x)=0 が異なる2つの虚数解をもつときんのとり得る値の範囲を求めよ。 また、このとき、2つの虚数解をα, β とする。 '+B'+2a+2/+3=11 であるとき kの値を求めよ。 配点 (1) 8点 (2) 12点 解答 (1) P(x)=x+(k-2)x2+(3-2k)x-6 P(2)=8+4(k-2)+2(3-2k)-6 = 0 <P(x) に x = 2 を代入する。 よって,P(x)はx-2 を因数にもち, P(x) を x-2で割ると、次のように 因数定理 なる。 x2+kx +3 x-2)x+(k-2)x2+(3-2k)x-6 -2x2 kx²+(3-2k)x P(x)は1次式x-αを因数にも (x-αで割り切れ ⇔P(α)=0 組立除法を用いて計算すると, のようになる。 kx² -2kx 3x-6 3x-6 0 k-2 3-2k -6 2 2k 6 1 k 3 10 したがって P(x)=(x-2)(x2+kx+3) 圈 P(2) = 0,P(x)=(x-2)(x2+kx+3 ) 多項式Aが多項式Bで割り あるとき,商をQ とすると A=BQ 完答への AP(2) の値を求めることができた。 道のり P(2) の値と因数定理から,P(x) が x-2 を因数にもつことに気づくことができた。A © 多項式の除法により, P (x) を因数分解することができた。 (2) (1)より, 方程式 P(x) = 0 は (x-2)(x2+kx+3)=0 すなわち x=2 または 3次方程式 P(x)=0の1 は,kの値に関係なく, x= 残りの解は2次方程式①の解で .....① x+kx+3=0 よって,P(x) = 0 が異なる2つの虚数解をもつ条件は, 2次方程式①が 虚数解をもつことである。 ①の判別式をDとすると D=k-4・1・3 = k²-12 2次方程式 ax2+bx+c=0 の判 別式をDとすると D=b2-4ac 40-

解決済み 回答数: 1
数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0
1/3