学年

質問の種類

数学 高校生

1番は体積の最小値を求める問題 2番は表面積の最小値を求める問題です ここで,xとrで置いてる部分ってなぜそこをxとrでおいてるんですか?

7) a このとき, 直線 ①と両座標軸との交点の座標 (2,0), (0,2b)であり,Sの最小値は2 る。 184 ■指針 2ab Ta (1) 球の中心を通り、底面に垂直な平面で 円錐を切ってできる切り口の三角形を考え る。 円錐の頂点と球の中心の距離をxとし 円錐の体積をxを用いて表す。 (2)表面積を体積を表す式で表すことができ (1)の結果が利用できる。 (1) 球の中心を0とし, 0を通り底面に垂直な 平面で直円錐を切って できる切り口の三角形 を △ABC とする。 A x ... ア 3r dV 0 dx V 583 + よって,Vは x=3rで最小値 / ara をとる。 別解 [②までは,本解と同じ] (x+r2=(x-r)2+4rx であるから V= =(x-r2+4mx-r) +42 x²(x+r)² 3(x-r) ar2 (x-r2+4nx-r) +42 3 x-r 2 == (x-r) + 4r2 3 +4rs x-r また, 球の切り口の円 D との接点を図のように D, E とする。 0 OA = x とすると, x はより大きいすべて の実数をとりうる。 V≧ B ① より xr>0であるから,相加平均と相乗平 均の大小関係により 123 (2√√(x-7). Ar²+4)=3 472 8 x-r E 881 4r2 等号が成り立つのは,x-r= すなわち x-r よってxr △ABE △AOD であるから BE:r=(x+r): √x2-22 BE: OD=AE: AD すなわち よって ゆえに BE= √√x²-72 BE√x2=(x+r) (x+r) 直円錐の体積をVとすると (x-r2=4r2 のときである。 xr>0であるから よって x=3r x-r=2r ゆえに,Vはx=3yで最小値 / ara をとる。 T (2)直円錐の表面積を S とすると S=7. BE² DES +1/2AB AB 2TBE 2π BE V=BE². AE =BE (BE+AB) 0= AB、 ここで, mx+r) 2 (x+r) BE: OD=AB: AO 2 y2(x+2)2 = 3(x-r) dV dx 3 [側面の展開図] であるから -> (x>r) 22(x+r)(x-1)(x+r2.1 AO AB= ・BE OD よってAB=BE (x-2)² r ゆえにS=BEBE+BE)=xBE (1+-) r 2(x+r)(x-3) 3(x-r2 xにおいて, dv = 0 とすると x=3y dx ①の範囲におけるVの増減表は次のようになる r(x+r) 2 =π Tr(x+1)² 3. x-r r (+1) (1) から, Sはx=3rで最小値 をとる。 38 r 18 . TY r² = 8 x²

未解決 回答数: 1
数学 高校生

四角で囲った部分がわからないです(Xの解) 特に二枚目の丸で囲んだ部分はどうしてこういうふうに言えるのかわからないです

354 基本 例題 223 係数に文字を含む3次関数 [類 立命館大] la を正の定数とする。 3 次関数 f(x)=x-2ax2+αxの0≦x≦1 における最大 値M (α) を求めよ。 基本 219 重要 224 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると,y=f(x) のグラフは右図のよう になる(原点を通る)。ここで, x=/1/3以外にf(x)=f(1/2)を 満たすx (これをαとする) があることに注意が必要。 a よって、1/3,α (/1/<α) が区間0≦x≦1に含まれるかどうか 3' a 3 <a a で場合分けを行う。 y4 f() O a a f'(x)=3x²-4ax+α²=(3x-a)(x-a) 解答 f(x) = 0 とすると x=147, a a 3' a>0であるから,f(x)の増減表は次のようになる。 以上から (x)はx=3 M(a)-( <a<1 すなわ <a< 2 のとき, f(x)はx=1で最大と M(a)=f(1) 0<a M Åsas 3 まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0から a ・<a ... ゆえに X- a x=/1/3であるから x x f'(x) + a 3 0 f(x) 大 a 0 + 極小 ここで,f(x)=x(x2-2ax+α²)=x(x-a)2から (+)-(-a), F(a)=0 3 27 -α 大 = 12/17 を満たすxの値を求めると, =1/1/3以外にf(x) 4 f(x)=から 4 x³-2ax² + a³x-17 a²=0 x3-2ax2+αx- α=0 (x-3) ( x − 4 27 (*) a)=0 0= CLAQ (*) 曲線 y=f(x) と直線 =は、x=号の y= 点において接するから、 f(x)-27 a³ 13(x- 3次関数の対称性の利目 樹 344 の参考事項で紹 の値を調べることもで 2つの極値をとる点 座標は 信 X=- 83 23 なお、p.344 で紹介 で割り切れる。このこと を利用して因数分解する とよい。 よって 3 -2a a² 0-27 a 5 Q2 3 9 x=- a 5 4 1 a a² 0 よって,f(x)の0≦x≦1における最大値 M (α) は,次のよ うになる。 3 9 13 としておきたい。 a 4 3 9 [1] 1< // すなわち α>3のとき 4 1 a -= M(a)=f(1) f(x)はx=1で最大となり 1 a²-2a+1 O 1 ・最大 大人の方針。 [1]は区間に極値をとる xの値を含まず、区間の 右端で最大となる場合 指針」 a a x 3 222は正の

未解決 回答数: 0
数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0
1/113