学年

質問の種類

数学 高校生

数II 円の接線、接点の問題です。練習31を、教科書の例を基に解いているのですが、x₁の消去の仕方がわかりません。解き方を教えてください。

5/8 練31 P103 点A(2,1)から円に引いた後線の試と接定の座幅 第2節 円 103 | 接点をPlug)とすると、Pu円上にあるかる。 2 x² + y² = 10 前ページの,円上の点における接線の方程式の公式を用いて、円の外 部の点から円に引いた接線の方程式を求めてみよう。 第3章 図形と方程式 「応用 例題 3 点A(1,3)から円 x2+y2=5に引いた接線の方程式と接点の座 標を求めよ。 考え方 前ページの接線の公式を用いるためには、 接点の座標が必要である。 接点をP(x1,y) とする。 TATKOMEBER 解答 接点をP(x1,y) とすると, Pは円上 にあるから 12+2=5 ① A(1,3) √5 また,Pにおける円の接線の方程式は 10 √5 0 √5 x xx+yy=5 ・・・・・・② この直線が点A (1, 3) を通るから 2+y2=5 1+3y1=5 ③ ①③ から x を消去して整理すると y₁2-3y₁+2=0 これを解くと y=1, 2) ③に代入して y=1 のとき x=2, y=2 のとき x=-1 よって、 接線の方程式 ②と接点P (x1,y) の座標は,次のよう になる。 接線 2x+y=5, 接点 (2,1) 20 接線 -x+2y=5, 接点 (-1, 2) 【?】 求めた2つの接線が、円x2+y2=5に接していることを確認してみ よう 練習A(21) から円 x2+y^2=1 に引いた接線の方程式と接点の座標を 25 31 求めよ。 5 また、Pにおける円の接線の方程式は。 x, x + y, z=1 ② この直線が点A(2,1)を通るから。 2x+y=1 ③

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡の問題です。 亅の部分までわかったのですが、赤線部分の計算がわかりません 解説お願いします🙇

PR ③100 直線 2x-y+3=0 に関して点Qと対称な点をPとする。 点Qが直線 3x+y-1=0 上を動く とき、点Pの軌跡を求めよ。 第3章 図形と方程式 121 直線 3x+y-1=0 ・① 上を動く YA ② 点をQ(s, t) とし, 直線 2x-y+3=0 (s,t) ② に関して 点Qと対称な点をP(x, y) とする。 [1]点PとQが一致しないとき,直線 PQが直線② に垂直であり,線分 PQの中点が直線 ②上にあるから t-y y+t 1-2.2=-1, 2.x+8 +1 + S-x 1 0 +3= 0 (1) P(x,y) x よって s+2t=x+2y, 2s-t=-2x+y-6 s, tについて解くと 垂直 ⇔ 傾きの積が1 線分 PQ の中点の座標 は (xts, y+) -3x+4y-12 4x+3y+6 S= t= 5 5 2 s,t を x, y で表す。 点 Qは直線 ①上の点であるから 3s+t-1=0 ③④に代入して -3x+4y-12_4x+3y+6 3・ --1=0 <st を消去する 5 整理すると x-3y+7=0 ⑤ [2]点PとQが一致するとき, 点Pは直線 ①と②の交点で y=11 5 2 あるから x=-- 5' これは⑤を満たす。 以上から、 求める直線の方程式は x-3y+7=0 PR ④101 方程式 ①と②を連立 させて解く。 xy 平面において, 直線 l:x+t(y-3)=0, m:tx-(y+3)=0 を考える。 tが実数全体を動く とき,直線lとの交点はどのような図形を描くか。 [類 岐阜大 ] l:x+t(y-3)=0 :①, m:tx-(y+3)=0 [1] x=0 のとき,②から t=y+3 x x+y+3(y-3)= 0 これを① に代入して x 両辺にxを掛けて x2+y2-9=0 ② とする。 y+3 を利用する x ため, x=0 と x=0 の 場合に分けて考える。 3 PR

解決済み 回答数: 1
1/139