学年

質問の種類

数学 高校生

(1)の解答で(X,Y)を(x,y)にかきかえてとありますが なぜですか?? X=x+p、Y=y+qと書いてあるのでそれがなぜ書き換えられるのかよく分かりません💦

第3章 基礎問 78 第3章 図形 48 一般の曲線の移動 図かけ (1)(i) 点(x,y) をx軸方向にp, y 軸方向に g だけ平行移動し 点を(X, Y) とするとき, x,yをX,Yで表せ. () 曲線 y=f(x) をx軸方向にp, y 軸方向に gだけ平行 移動した曲線の方程式は y-g=f(x-p) で表せること を示せ. (2)(i)(x,y) を直線x=α 2 参考 y=f(2a-X) (X, Y) を (より)に書きかえて①左部木 y= f(2a-x) (2) の (i)において, 点 (X, Y) を直線 y=bに関して対称移動すると,点 (X,26-Y)に移ります。 x=a (20-x,2b-y) (a,b) すなわち, 点 (2a-x, 2b-y) に移り、この点 最初の点(x,y) を結ぶ線分の中点は(a,b) (x,y) になります. y=b (X, Y) これは,「ある点を直線 x=α に関して対称移 (i) 曲線 y=f(x)を直線 r=a に関して対称移動した曲 線の方程式は y=f(2a-x) と表せることを示せ. に関して対称移動した点を (X, Y)とするとき, x, y を X, Yで表せ 79 (1) () 軌跡の考え方によれば, XとYの関係式を求めることが目 精講 標ですから,xとyを消去すればよいことになりますが、 最後に XをxにYを」に書きかえることを忘れないようにしましょ う.それなら、はじめから移動後の点を (x, y) とおけばよいと思うかもし れませんが,それでは移動前の点(x,y) と区別がつかなくなります。この ような理由でおかれた (X, Y) を流通座標といいます。 そのあと直線y=bに関して対称移動することは、もとの点の 点 (a, b) に関する対称点を求めることと同じ」ということです。 図 からわかるように「点対称とは,対称の中心のまわりに180°回転する ことと同じです。 ポイント 曲線 y=f(x) をx軸方向にp, y 軸方向にだけ 平行移動した曲線の方程式は f(x) 曲線 y=f(x) を直線 =α に関して対称移動し た曲線の方程式は (!)(T) 解 答 X=x+p faal Y=y+q だから この()は ↑においてその値を定めた 上にある点。つまり、y=f(x) y+q (X,Y) ときの値がただつに q 注 x=X-p, y=Y-q u(x,y)=f(x)をみたすので定まるということ。 Y-9= f(x-p (X, Y) を (x, y) に書きかえて y-q=f(x-p) (2)(i)右図より y x+X 2 ==a, Y=y 0 XC x=a y= f(2a-x) p x+px 平行移動の公式は「xにを yy-g を代入する」ことだから, 曲線がf(x,y)=0 の形のときは,f(x-p, y-g)=0 が平行移動した曲線 になります(演習問題48) また,この公式は、証明できることがどうで もいいとはいいませんが,まず, 使えるようになることが大切です . 13 x=2a-X,y=Y (i) (x,y) は y=f(x) をみたすので, (x,y) (X,Y) 演習問題 48 x+X |-1|+|y-2|=1 で表される図形を図示せよ.

解決済み 回答数: 1
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で解答の黒四角の部分の 考え方がわかりません。教えて下さい。

実戦問題 11 2つの2次不等式の解の関係 αを定数とし、次の2つの2次不等式について考える。 2x-5x-3 > 0 ... 1, x2 -2 (a +2)x +8α < 0 ・・・ ② (1) 不等式① の解はx< (2)不等式 ②を満たす実数x が存在するとき, αキ [アイ] ウ I 1 <x である。 オ である。 a = オ とすると、不等式 ② の解は a< オ のとき カ a<x<キα>オのとき 1 1 <x<ケαである。 (3) 不等式 1, ②を同時に満たす整数xがただ1つだけ存在するとき, 定数αの値の範囲は コサ ≦a< シス <a≤チである タ 解答 (1) ① の左辺を因数分解すると よって, 不等式① の解は (2x+1)(x-3)>0( x<-- 1 2' 3 <x 判別式 使える Key 1 下 小 ~(2)②の左辺は,x2-(2a+4)x +8a=(x-4)(x-2a) と因数分解でき不等式 ② の左辺を因数分解し る。 よって, ② より (x-4)(x-2a) < 0 ... 2) 2a = 4 すなわち α = 2 のとき②' は (x-4)2<0となり,この不等 て考える。 (S) 大 式を満たす実数x は存在しない。 よって, 不等式 ②を満たす実数x が存在するとき 3 a +2 >D a = 2 とすると,不等式 ② の解は 2αと4の大小によって場合分け して 2α < 4 すなわち α <2のとき 2a<x<4 2a> 4 すなわち α > 2 のとき 4 <x<2a 2 SI+08+0& ( (3) (i) a <2の Key 2 不等式①,② を同時に満たす整数xがただ1つだけ存在するとき, 右の数直線より,その整数は x = -1 であり, a αの値の範囲は, DE −2≦2a <-1 であるから 2α=-2も含むか注意する 1 -1≦a <- 1 34 Xx 2 2a 2 (ii) α > 2 のとき Key 2 (SP +18 +) 不等式①,②を同時に満たす整数xがただ1つだけ存在するとき, 右の数直線より,その整数はx=5であり,αの値の範囲は, 2a=2のとき、 ① ② 時に満たす整数はx=-1 1つだけであるから, 2c= も含む。 52a≦6 であるから 5 <a ≦ 3 2 (i), (ii)より 1 -1≤a<- 2 攻略のカギ! 52 1 34546 x 2 2a) <a≦3 2a6も含むか注意する 2a = 6 のとき, ① ② を に満たす整数はx=5 だけであるから, 24=6 む。

解決済み 回答数: 1
1/1000