学年

質問の種類

数学 高校生

なぜπ/6が√3/3になるのかが分かりません 赤で囲った部分のことです

D M ★★☆☆ 例題 153 2直線のなす角 2直線 3xy0 ... ① 2x+y-4=0 ② について (1) 2直線のなす角0 (0≧≦o)を求めよ。 (2) 直線 ①との角をなし、原点を通る直線の方程式を求めよ。 ReAction 2直線のなす角は, tan0 = (傾き) を利用せよ IA 例題132 思考プロセス (1) 直線 ①とx軸の正の向きのなす角を 0, 直線②とx軸の正の向きのなす角を02 001, 02 の関係は 0 tand, tan02 (2) 図をかく 条件 を満たす直線は, 右の図のように2本ある。 Action» 2直線のなす角0は, tan の加法定理を利用せよ 解 (1) ① ② がx軸の正の向きとなす角をそれぞれ 01, 02 と tanQ=3, tand2=2 すると 002-01 であるから tane = tan(02-01) tang – tan. 1+tan O2tan01 -2-3 = 1 1+(-2)・3 直線 y=mx+kがx軸 の正の向きとなす角を 0(0≦0π)とすると m=tan0 y=mx+k 2 yea 4001200 102 01 ( 01 _02 交点を通るx軸に平行な 直線を引き, 同位角を考 0 2x える。 30 π より 0 = π 4 (2) 求める直線がx軸の正の向きと y π なす角は 01 土 である。 6 6+5√3 tan (+) 3 tan (6-6)=-6+5√3 3 よって、 求める直線は,原点を通るから tan(+)- 3- tan(0,-)- 6+5√3 y = -6+5√3 3+ 3 = 1-3. www/www/www/w 3 √3 3 3 1+3・ 3 3 -x, y= X 3 原点を通るから、切片 は0である。 123 (1) 練習 1532 直線 x-2y=0 ... ①, x+3y-6=0 ② について ... (1) 2直線のなす角00≧6 0≧≦1) を求めよ。と π 2 (2)直線 ①との角をなし,原点を通る直線の方程式を求めよ。 p.310 問題

解決済み 回答数: 1
数学 高校生

この手書きだと答えが違うのですが、なぜダメですか?

補充 例題 140 223 三角方程式の解法 (和積の公式の利用) ①①①①① 2πにおいて, 方程式 sin30- sin20+sin0 = 0 を満たす 0を求めよ。 CHART & SOLUTION [類 慶応大] 補充 139 2倍角, 3 倍角の公式を利用して解くのは大変 (別解 参照)。 3項のうち2項を組み合わせ て,和→積の公式 sin A+sin B=2sin- A+B A-B COS により積の形に変形。 2 2 残りの項との共通因数が見つかれば, 方程式は = 0 の形となる。 そのためには sin30 と sin0 を組み合わせるとよい。 解答 の 1 ヨチ 学 関 0与式から (sin30+sin0)-sin20=0 ここで sin30+sin0=2sin 30+0 30-0 COS 2 2 =2sin 20 cose よって 2sin 20cos-sin20=0 3 すなわち sin 20(2cos0-1)=0 あせ ← (30+0)÷2=20 である から sin 30, sin0 を組 み合わせる。 4章 積=0 の形に。 したがって sin200 または cos0= 0≦0 <2πであるから 0≤20<4л この範囲で sin200 を解くと 20=0, π, 2, 3π coso= の参考図 2 y1 1 π 3 よって 0=0,, x, x π, π 002 の範囲で cos0= π 5 |-1| を解くと 0= π 3 3 したがって,解は 3'2 0=0, 1, 7, 7. x. 3* 3 5 π, π 別解 sin 30 - sin 20+sin0 =3sin0-4sin0-2sinOcos0+sin0 =4sin 0-4 sin³0-2 sin cos 0 =2sin0(2-2sin'-cos0 ) =2sin(2cos2d-cose)=2sin0cos0 (2cos0-1) よって, 方程式は 2sincos (2cos0-1)=0 ゆえに sin00 または cos0=0 または cosθ=- 2 したがって、002 から求める解は π 0=0, 1, 1, x, x, 3 5 3' 2 π, 2T, 3π PRACTICE 140 53 T 13 ON |1 1x T 2 17 加法定理 sin30=3sin0-4sin 0, sin20=2sin Acoso ← sin20=1-cos2 COSA=Q を満たす 0 を求めよ。

解決済み 回答数: 1
数学 高校生

赤い下線の変形で他の文字ではなく、y1を消しているのは、2行前のPFベクトル・nベクトルがc、x1、a2で表されているのに合わせにいくためですか?回答よろしくお願いします。

186 例題 96 焦点と接点を結ぶ直線と接線のなす角 楕円 1,2 D ★★★★ 621 上の任意の点Pにおける接線をとし 2つの焦点を F, F とするとき,接線1が2直線 PF, PF" となす角は等しいことを示せ。 目標の言い換え 2直線のなす角 → (傾き) = tan b, と tan0 = tan (01-02)=・・・(加法定理)・・・の利用 → 接線や直線 PF, PF' がx軸に垂直のときを 分けて考えなければならない。 (大変 ) ⇒ 接線の法線ベクトルをすると 法線ベクトルの利用 すべての場合を考えることができる。 PF のなす角α) = (n と PF のなす角β) F ⇒ cosa = cosβ を目指す。 C y 02 0₁ 0 x Action» 接線が直線となす角の性質は、法線が直線となす角を利用せよ α>b>0 としても一般性を失わ B a P =d2-2cx1+ CX であるから |PF| = q – Cx1 =a- 同様に, PF'= (-c-x1, -y)より a CX1 a PFn= -C-1,|PF|=α+ CX1 a PF, PF' とnのなす角をそれぞれα, β(0≦a≦ MBS) とおくと cosa= cos B Action. PF • n CX1 1 a² CX1 a- n an PFn (a PF.n |PF||| cosa=cosβ (a + cxi)\n\ CX1 a sanB≦πであるから alml a=Ba したがって, 接線が2直線 PF, PF'′ となす角は等し Point...焦点と接点を結ぶ直線と接線のなす角 - 光線が直線に当たって反射するとき,右 図1のように入射角と反射角の大きさ は等しくなる。 曲線上の点Pに当たって 反射する場合には,図2のように、点P における接線に対して入射角と反射角を 考え、直線と同様にこれらの大きさは等 しくなる。 よって ない。 焦点F'(-c, 0),F(c, 0) (c>0) y▲ P(x1,yi) とすると c² = a²-b² えればよい。 b>a (長軸がy軸上) のときも同様に証明でき ることが明らかであるか > bの場合だけ考 F また,点P(x1,y1) とすると, 接線 F -a -C 0 ca の方程式は X1X Viy + a² 62 =1 よって, lの法線ベクトルの1つは X1 n = ここで, PF = (c-x, y) より n = (a, b) 200 PFn=(c-x1 X1 09D 62 2 CX1 X1 Yı 2 a² a² 62 2 Pは楕円上の点であるから+2=1 よって PF = CX-1 · n 直線 ax + by + c = 0 の 法線ベクトルの1つは 0円 図 1 例題96で証明したことは, 右の図3において, 点Pが のどのような位置にあってもこの性質が成り立つこと 楕円の1つの焦点から発射した光線が楕円に当たって反 と、すべてもう1つの焦点に集まることが示されたこと (さらに, p.188 Play Back 12 も参照。) また ||PF|2=(c-x)2+y^ X1 =c2-2cx1+x2+621 = c2+b2-2cx1+ (1-1) x² 62 a" したがって、盗んできた 練習 96a,bはa>0,6≠0 を満たす定数とする。 の交点Pにおける放物線Cの接線をしと 男接線が2直線, PF となす角は等し

解決済み 回答数: 1
1/191