学年

質問の種類

数学 高校生

数Bサクシードの218の問題が分りません [サクシード数学B 問題218] 2つの等差数列 2,5,8,......と6,11,16,......とに共通に含まれる項を順に並べると、どんな数列になるか。 答えの黄色でマークアップしているところが1番わからないです な... 続きを読む

234 サクシード数学B n>0であるから 36-n<0 よって n>36 これを満たす最小の自然数nは n=37 ゆえに,初項から第37項までの和が初めて負と なる。 (2) 数列 {a} の一般項は an=70+(n-1) (-4)=-4n+74 <0とすると よって -4n+74<0 74 n> =18.5 4 これを満たす最小の自然数nは n=19 ゆえに、数列{a} は第19項以降が負になるから, 初項から第18項までの和が最大となる。 その最大値は S18=2.18(36-18)=648 別解 ①から Sn=2n(36-n)=-2(n2-36n) =-2(n-18)2+2・182=-2(n-18)2+648 よって, Sm は n=18で最大値 648 をとる。 ゆえに、初項から第18項までの和が最大で,そ の最大値は 648 217 指針 (1) (2) +1-a=(一定) となることを示す。 a₁, as, A7, の添え字 (1,4,7, ・・・・・・) に着目すると,これは,初項 1, 公差 3 の等差数列である。 (1) an+1-an={-5(n+1)+6)-(-5n+6) =-5 よって, 数列{a} は等差数列である。 001 また,初項は a1=-5・1+6=1, 公差は-5 (2) 数列 {a} の項を,初項から2つおきにとって できる数列を {bm) とすると よって ゆえに b=a32 (n=1, 2, 3, ......) b=-5(3n-2)+6=-15n+16 6n+1-6„={-15(n+1)+16)-(-15+16) 000 =-15 したがって, 数列{bm} は等差数列である。 また,初項は b1=a1= 1, 公差は-15 218 {a}:2,5,8, {6}:6,11,16, ...... とすると an=2+(n-1)・3=3n-1 6„=6+(n-1)・5=5n+1 a=bm とすると 31-1=5m+1 よって 31=5m+2 ① これを変形すると 3(1+1)=5(m+1) 3と5は互いに素であるから, kを整数として Z+1=5k, m+1=3k すなわち1=5k-1, m=3k-1 と表される。 ここで, 1, mは自然数であるから,5k-1≧1 かつ3k-1≧1より kは自然数である。 ゆえに, 1=5k-1 (k=1,2,3,......) とおける。 したがって、数列{an}と数列{bm}に共通に含ま れる項は、数列{a} の第 (5k-1)項 (k=1, 2, 3, ......) で 3(5k-1)-1=15k-4 =11+(k-1)・15 よって, 初項 11, 公差 15 の等差数列になる。 参考 [①②のように変形する方法] 方法1) ①の右辺を5の倍数にするため、 3,3+5,3+5・2, を加えてみる。そのうち, 左辺が3の倍数とな るものを見つける。ここでは,3でよい。 ( 方法2 ) 31=5m+2 ① l=-1,m=-1は ① を満たす整数であり 3.(−1)=5.(-1)+2 ③ ① - ③ から 3(1+1)=5(m+1) ..... 方法2は,数学Aの 「数学と人間の活動」で 1次不定方程式を解く際に学ぶ方法である。 219 公比をとし,一般項を α とする。 12=3 (1) r= よって a=4.3"-1 1 - = 01 = 1 (2) また 5=160 √5 また α5=4・35-1=324 よって,=16-12-1 5-1 1 == 16 (3)555 よって=25 r=- 25 また = a = 25(√5) 5-1 =25.5= =1 ✓5\n-1 参考 an= 1=25/ ✓5-1 5 =52. √5 01=525-27-152-45 12 (4) 7= 3 2 --- -8 -1

解決済み 回答数: 1
数学 高校生

(1)の解答で(X,Y)を(x,y)にかきかえてとありますが なぜですか?? X=x+p、Y=y+qと書いてあるのでそれがなぜ書き換えられるのかよく分かりません💦

第3章 基礎問 78 第3章 図形 48 一般の曲線の移動 図かけ (1)(i) 点(x,y) をx軸方向にp, y 軸方向に g だけ平行移動し 点を(X, Y) とするとき, x,yをX,Yで表せ. () 曲線 y=f(x) をx軸方向にp, y 軸方向に gだけ平行 移動した曲線の方程式は y-g=f(x-p) で表せること を示せ. (2)(i)(x,y) を直線x=α 2 参考 y=f(2a-X) (X, Y) を (より)に書きかえて①左部木 y= f(2a-x) (2) の (i)において, 点 (X, Y) を直線 y=bに関して対称移動すると,点 (X,26-Y)に移ります。 x=a (20-x,2b-y) (a,b) すなわち, 点 (2a-x, 2b-y) に移り、この点 最初の点(x,y) を結ぶ線分の中点は(a,b) (x,y) になります. y=b (X, Y) これは,「ある点を直線 x=α に関して対称移 (i) 曲線 y=f(x)を直線 r=a に関して対称移動した曲 線の方程式は y=f(2a-x) と表せることを示せ. に関して対称移動した点を (X, Y)とするとき, x, y を X, Yで表せ 79 (1) () 軌跡の考え方によれば, XとYの関係式を求めることが目 精講 標ですから,xとyを消去すればよいことになりますが、 最後に XをxにYを」に書きかえることを忘れないようにしましょ う.それなら、はじめから移動後の点を (x, y) とおけばよいと思うかもし れませんが,それでは移動前の点(x,y) と区別がつかなくなります。この ような理由でおかれた (X, Y) を流通座標といいます。 そのあと直線y=bに関して対称移動することは、もとの点の 点 (a, b) に関する対称点を求めることと同じ」ということです。 図 からわかるように「点対称とは,対称の中心のまわりに180°回転する ことと同じです。 ポイント 曲線 y=f(x) をx軸方向にp, y 軸方向にだけ 平行移動した曲線の方程式は f(x) 曲線 y=f(x) を直線 =α に関して対称移動し た曲線の方程式は (!)(T) 解 答 X=x+p faal Y=y+q だから この()は ↑においてその値を定めた 上にある点。つまり、y=f(x) y+q (X,Y) ときの値がただつに q 注 x=X-p, y=Y-q u(x,y)=f(x)をみたすので定まるということ。 Y-9= f(x-p (X, Y) を (x, y) に書きかえて y-q=f(x-p) (2)(i)右図より y x+X 2 ==a, Y=y 0 XC x=a y= f(2a-x) p x+px 平行移動の公式は「xにを yy-g を代入する」ことだから, 曲線がf(x,y)=0 の形のときは,f(x-p, y-g)=0 が平行移動した曲線 になります(演習問題48) また,この公式は、証明できることがどうで もいいとはいいませんが,まず, 使えるようになることが大切です . 13 x=2a-X,y=Y (i) (x,y) は y=f(x) をみたすので, (x,y) (X,Y) 演習問題 48 x+X |-1|+|y-2|=1 で表される図形を図示せよ.

解決済み 回答数: 1
1/1000