学年

質問の種類

物理 高校生

(2)条件にV>0とありますが、なぜV=0は含まれないのか教えてください

遠心力に関係した身近なものとしては, 洗濯機や遊園地のループ式ジェットコースターなどがある。 例題 15 鉛直面内での円運動 右図のような, 半径[m〕のなめらかな円筒面に向 けて,質量m〔kg〕 の小物体を大きさvo [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg〔m/s'] とする。 53 58 62 B C 10 (1) 鉛直線となす角が0の点(図の点C) を通過すると きの, 小物体の速さと面から受ける垂直抗力の大き さを求めよ。 m Vo A 5 (2) 小物体が点Bを通過するための の条件を求めよ。 ●センサー14 解答 (1) 点での小物体の速さを 円運動では,地上から見て 解くか, 物体から見て解く かを決める。 [m/s] とすると, 力学的エネルギー 保存の法則より B mgcoso N C 1 12= mvo mv2. +mg(r+rcose) ① 地上から見る場合 遠心力は考えず,力を円の 半径方向と接線方向に分解 し,円運動の半径方向の運 動方程式を立てる。 2 ゆえに、 rcos 00 0 mg m-=F r または mrw=F ② 物体から見る場合 v = √v2-2gr(1+cos0) [m/s] 垂直抗力の大きさをN[N] とすると, 地上から見た円運動の運動方程式は, m- =N+mg cose r これに”を代入し、整理すると, ......① 遠心力を考え、力を円の半 径方向と接線方向に分解し, 半径方向のつり合いの式を 立てる。 ※どちらでも解ける。 2 mvo N= -mg (2+3cos) 〔N〕 r ……② ● センサー 15 物体が面に接しているとき, 垂直抗力 N≧0 (1) 水平面を重力による位置 エネルギーの基準面とする。 別解 小物体から見ると, 円の半径方向にはたらく力は,実際 にはたらく力のほかに、円の中心0から遠ざかる向き に遠心力がはたらいている。 半径方向の力のつり 合いより, N+mg cosm-00 (量的関係は上と同じ) r 圃 非等速円運動では,円の接線方向にも加速度があり、物体か ら見た場合、接線方向での力のつり合いを考えるためには、接 線方向にはたらく慣性力を考える必要がある。 (2)(1)より,00π [ad] では, 0が小さくなるにつれて, v, Nはともに減少していく。 点Bを通過するためには,点B でぃ> 0 かつN≧0 であればよい。 ① より 0=0を”に代 入して, v= √vo²-4gr よって,vo4gr>0 ゆえにvor 注 ③ ④を比較すると, N≧0(面から離れない条件) が 2 の条件を決めることになる。 2 mvo また,②より 0=0をNに代入して、N= 5mg r 2 mvo よって, -5mg≥0 ゆえに、vo√5gr r ③ ④ がともに成り立つためには,vo ≧√5gr 5円運動 35

解決済み 回答数: 1
物理 高校生

この問題は、等速円運動ではない円運動をしていますよね? 等速円運動ではないのに、等速円運動の運動方程式(F=m×r分のv2乗)を使えるのはなぜですか?

遠心力に関係した身近なものとしては,洗濯機や遊園地のループ式ジェットコースターなどがある。 例題15 鉛直面内での円運動 右図のような, 半径[m〕のなめらかな円筒面に向 けて,質量m〔kg〕 の小物体を大きさ [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg〔m/s'] とする。 53 58 62 B C P (1) 鉛直線となす角が0の点(図の点C) を通過すると きの, 小物体の速さと面から受ける垂直抗力の大き さを求めよ。 人 (2)小物体が点Bを通過するための の条件を求めよ。 Um 0.0& m Vo センサー 14 円運動では,地上から見てる 解くか、物体から見て解く かを決める。 解答 (1) Cでの小物体の速さを [m/s] とすると, 力学的エネルギー 保存の法則より, Bmgcose N C 1 1 ,2= mvo mv+mg(r+rcost) ① 地上から見る場合 2 遠心力は考えず,力を円の 半径方向と接線方向に分解 し円運動の半径方向の運 動方程式を立てる。 ゆえに、 cos00 mg ......① 12 m-=F r または mrw²=F ② 物体から見る場合 遠心力を考え、力を円の半 径方向と接線方向に分解し, 半径方向のつり合いの式を 立てる。 ※どちらでも解ける。 ● センサー 15 v= vv-2gr(1+cos0)[m/s] 垂直抗力の大きさを N[N] とすると, 地上から見た円運動の運動方程式は, v² m =N+mg cose r これを代入し、整理すると, 2 mvo N= -mg (2+3cos) 〔N〕 r ......② 別解 小物体から見ると, 円の半径方向にはたらく力は、実際 にはたらく力のほかに、円の中心から遠ざかる向き に遠心力がはたらいている。 半径方向の力のつり r 物体が面に接しているとき, 垂直抗力 N ≧0 合いより, m01.0 v² ◆N+mg cose-m - 00 (量的関係は上と同じ) (1) 水平面を重力による位置 エネルギーの基準面とする。 r 非等速円運動では、円の接線方向にも加速度があり、物体か ら見た場合、接線方向での力のつり合いを考えるためには,接 線方向にはたらく慣性力を考える必要がある。 (2)(1)より, 00 [ad] では, 0が小さくなるにつれて, 0, Nはともに減少していく。 点Bを通過するためには,点B で0かつN≧0 であればよい。 ①より, 8 = 0 を”に代 入して, v = √vo²-4gr よって, v4gr>0 ゆえに mvo また,②より 8=0をNに代入して, N= 5mg ④を比較すると, N≧0(面から離れない条件) が の条件を決めることになる。 2 mvo よって, -5mg≥0 ゆえに、r r ③④がともに成り立つためには、ひ≧√5gr 5

解決済み 回答数: 1
数学 高校生

楕円についての問題なのですが、写真3枚目の解説でPC.CFの比がa:-ccosθなのはなぜ分かったのでしょうか?教えて頂きたいです。

楕円 +2 a2 + y 2 33楕円 62 199-33 =1 (a>b>0) 上に点Pをとる. ただし, Pは 第2象限にあるとする. 点Pにおける楕円の接線を1とし,原点を 通りに平行な直線を m とする. 直線と楕円との交点のうち, 第 1象限にあるものをAとする. 点Pを通りmに垂直な直線が m と交 ある点をBとする.また,この楕円の焦点で x 座標が正であるもの をFとする. 点Fと点Pを結ぶ直線が m と交わる点をCとする. 次 の問いに答えよ。 (1) OA・PB = ab であることを示せ. (2)PC = aであることを示せ. [大阪大〕 アプローチ 01-202 (楕円 (周) 上の点を設定するときは,ふつうはパラメータ表示を利用しま す ( 3 (D). いまの場合は P(a cos 0, b sin O) とおけます (ただし (aa, bβ) とおくこともある 34 (ハ) 三角関数を導入しておけば,三角関数の公式 (和積・合成・倍角・半角など) が使えて何かと便利です.本間は第2象限に 点をとるので cos00, sin0 0 であることに注意して下さい.また,楕 円の接線については32(イ). (D)2次曲線の離心率(定点からの距離と定直線までの距離の比が一定) に よる定義があります.これは詳しく覚えておく必要はありませんが,焦点か ら曲線上の点までの距離はきれいな式で求まることは頭に入れておいて下さ い つまり2点間の距離公式を利用しても最後は√がはずれるのです. (2)は計算でやれば必ずできるでしょうが、 かなり面倒な事になりそうで すそこでPF の長さが簡単に求まることはわかっているので, PC, CF の 長さの比を求めようと考えます. 合 x2 Placose, b sing) (書く0<x) とおくと、に + a² = 62 cos sin -x+ a by=1

未解決 回答数: 1
数学 高校生

sin x /x→1の証明について 円を用いた面積比較からのはさみうちを使って証明する方法(一枚目)が有名ですが、微分係数の定義に当てはめる(二枚目)のはダメなんでしょうか? sin xのグラフの原点の傾きという意味なのですごく単純です

[証明] とし,∠ABC = 0 とする.この B 3 のグラ CD lim- 8-082 表しています。 とを を求めよ. かり記憶しておきましょう。 この大小関係は、よく利用されるものなのでしっ y=sin.x 12 0 三角関数に関する極限のうち、最も重要であるのは次の極限です . この定理を用いて, lim sin.x lim 110 I sin.x 1-0 I =1であることを示しましょう. [証明 ] x→0 とするから, 0<|x|<1としてよい。 この公式を証明するための準備として、次の定理の成立を示しておきましょう。 0<x< 10 において, sin.z<x<tanzi sinr<r<tanr の各辺を sin.x(0) で割って, 1<x 1 sinx COS.X ∴. 1> sinx > COS I I 図のように, 半径1の単位円周上に∠AOB=x (x は弧度法の角) となるように2点A, B をとる. lim cos.x=1であるから, はさみうちの原理により +0 このとき面積について, 点Aにおける円の接線と半直線 OB との交点をT とする. B. sinx lim =1 ......① 次に, 2 IC x+0 t< <<0のとき、x=-t とおくと << であるから,①より、 sinx sin(-t) sint IC lim lim- lim- =1 0115 x t+0 -t t+0 t △OAB <扇形 OAB < △OAT が成り立つ. それぞれの面積をx を用いて表すと ①.②より. 1 2 sinr<<tanr 1 2 0-(-x+x) mil lim sinx TC x0 =1 なる.したがって, 0<x<2/27において、 no inil が成り立つ. sinr<r<tang 薫り立つ. (証明終わり) この極限公式は,xが十分に小さい (0に近い)とき, sinx≒x であることを表しています.

解決済み 回答数: 2
1/95